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PREFACE

This book is based on lecture courses on plasma physics given by the author
in various educational institutions in Russia and other countries during the
last thirty years. The courses were intended for both beginning and advanced
graduate students in the physics and engineering professions. The notes for
these lectures are the basis for eight previous books on the physics of ionized
gases. The present book uses some of the material of the earlier ones, but
many new developments in the physics of ionized gases and plasmas are
included here.

The main goal of the book is to acquaint the reader with the fundamental
concepts of plasma physics. It can be useful both for students and for mature
scientists who work in diverse aspects of this area of investigation. The book
is designed to preserve the level of sophistication of contemporary theoretical
plasma physics, while at the same time using simple, physically motivated
descriptions of the problems. These requirements may seem to be contradic-
tory. Nevertheless, the author tried to achieve these goals by using limiting
cases of problems to reduce the obscuring complexity of fully general treat-
ments, and to employ simple models that have proven their value. It has been
found possible to expound the contemporary state of the physics of ionized
gases in a relatively accessible form.

A small part of the book where an introduction to some problems is given
(as in Chapter 1) contains an entirely qualitative description. In the main part
of the book, guided by the insight of specialists, the author avoids an overly
descriptive approach to the problems treated. In this way, attention can be
focused on the fundamental physics of the problems treated to allow the
reader to develop his independent insight into the details, while preserving
the modern level of understanding of these problems.

xiii



xiv PREFACE

Since this book presupposes the active participation of the reader, it
contains up-to-date information in the text ot its tables and in the appen-
dices. The bibliography is selected to allow one to study in detail specialized
subjects in this area of investigation. Because some chapters of the book
relate to distinct applications of plasma physics, portions of these chapters
may be studied independently of other chapters.

The author thanks Professor Howard R. Reiss, who prepared the excellent
English version of this book.

BoRIs M. SMIRNOV
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CHAPTER 1

PLASMA IN NATURE AND IN
LABORATORY SYSTEMS

1.1 PLASMA AS A STATE OF MATTER

The name “plasma” was introduced into physics in the 1920s to describe a
conducting gas. Charged particles in a conducting gas result from detachment
of electrons from atoms or molecules. In order to understand the conditions
for the existence of such a system, we compare it with an ordinary chemical
system. Let us consider, for example, atmospheric air, consisting mainly of
nitrogen and oxygen molecules. At high temperatures, along with the nitro-
gen and oxygen, nitrogen oxides can be formed. The following chemical
equilibrium is maintained in air:

N, + O, & 2NO — 41.5 kcal /mol. (1.1)

Here and below, the sign < means that the process can proceed either in
the forward or in the reverse direction. According to the Le Chatelier
principle, an increase in the temperature of the air leads to an increase in the
concentration of the NO molecules.

A similar situation takes place in the case of formation of charged
particles in a gas, but this process requires a higher temperature. For
example, the ionization equilibrium for nitrogen molecules has the form

N, © NJ + e — 360 kcal /mol. (1.2)

Thus, the chemical and ionization equilibria are analogous, but ionization of
atoms or molecules proceeds at higher temperatures than chemical trans-
formations. To illustrate this, Table 1.1 contains examples of chemical and

1



2 PLASMA IN NATURE AND IN LABORATORY SYSTEMS

TABLE 1.1. Temperatures Corresponding to Dissociation of 0.1% of Molecules or
Tonization of 0.1% of Atoms at a Pressure of 1 atm

Chemical Equilibrium T,K Jonization Equilibrium T,K
2C0O, « 2CO + O, 1550 HoeH'+e 7500
H, & 2H 1900 He & He"+ e 12000
0,20 2050 Cs e Cst+e 2500
N, & 2N 4500
2H,0 & 2H, + O, 1800

ionization equilibria. This table gives the temperatures at which 0.1% of
molecules are dissociated in the case of chemical equilibrium or 0.1%
of atoms are ionized for ionization equilibrium. The pressure of the gas is
1 atm. Thus, a weakly ionized gas, which we shall call a plasma, has an
analogy with a chemically active gas. Therefore, though a plasma has charac-
teristic properties which we shall describe, it is not really a new form or state
of matter as is often asserted.

In most actual cases a plasma is a weakly ionized gas with a small degree
of ionization. Table 1.2 gives some examples of real plasmas and their
parameters—the number densities of electrons (N,) and of atoms (N,), the
temperature (or the average energy) of electrons (7,), and the gas tempera-
ture (7). In addition, some types of plasma systems are given in Figs. 1.1
and 1.2.

It is seen that generation of an equilibrium plasma requires strong heating
of a gas. One can create a conducting gas by heating the charged particles
only. This takes place in gaseous discharges when an ionized gas is placed in
an external electric field. Moving in this field, electrons acquire energy from
the field and transfer it to the gas. As a result, the mean electron energy may
exceed the thermal energy of neutral particles of the gas, and the electrons
can produce the ionization which is necessary for maintaining an electric
current in the system. Thus, a gaseous discharge is an example of a plasma
which is maintained by an external electric field. If the temperatures
of electrons and neutral particles are identical, the plasma is called an equi-
librium plasma; in the opposite case we have a nonequilibrium plasma.
Figure 1.3 gives some examples of equilibrium and nonequilibrium plasmas.

TABLE 1.2. Parameters of Some Piasmas®

Type of Plasma N,,cm™3 N,em™? T,K T,K
Sun’s photosphere 1043 10" 6000 6000
E-layer of ionosphere 10° 10" 250 250
He-Ne laser 3 x 101 2 % 10'6 3 x 10* 400
Argon laser 1013 101 10° 103

N,,N are the number densities of electrons and neutral atomic particles respectively, and T,, T
are their temperatures.
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Figure 1.3 Electron and gas temperatures of laboratory plasmas. The straight line
corresponds to the equilibrium plasma whose electron and gas temperatures are the
same.

Thus, plasma as a physical object has definite properties that characterize
it. The presence of charged particles makes possible various types of interac-
tion with external fields that lead to a special behavior of this object, which is
absent in ordinary gaseous systems. Furthermore, it creates a variety of
means for generation and application of plasmas, which will be considered
below.

1.2 METHODS OF PLASMA GENERATION

Let us review methods of plasma generation. The simplest method uses the
action of an external electric field on a gas to produce electrical breakdown
of the gas. Gaseous discharge and gas discharge plasma have a long history.
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We can date the start of its study from 1705, when the English scientist
Francis Hauksbee made an electrostatic generator whose power allowed him
to study luminous electric discharges in gases. In 1734, Charles Francois de
Cisternay Dufay (France) discovered that air is conducting in the vicinity of
hot bodies. In 1745, E. J. von Kleist (Germany) and P. V. Musschenbroek
(Netherlands) constructed independently a type of electric capacitor named
the Leyden jar. It made possible the study of electrical breakdown in air. In
1752, the American scientist and statesman Benjamin Franklin created a
theory of lightning on the basis of experiments. He considered the phe-
nomenon to be a flow of electricity in accordance with its contemporary
understanding. Thus, the above investigations gave the first understanding of
the processes of passage of electric charges through gases, and were con-
nected more or less with gaseous discharges.

A gas-discharge plasma is a common form of plasma which can have a
variety of parameters. It can be either stationary or pulsed, depending on the
character of the external fields. An external electric field may cause electrical
breakdown of gas, which then generates different forms of plasma depending
on the conditions of the process. In the first stage of breakdown, a uniform
current of electrons and ions may arise. If the electric field is not uniform, an
ionization wave can propagate in the form of an electron avalanche streamer.
In the next stage of the breakdown process, the electric current establishes a
distribution of charged particles in space. This is a gaseous discharge, which
can exist in a variety of forms.

After the external electric field is switched off, the plasma decays as a
result of recombination of electrons with ions, and spatial diffusion of the
plasma occurs. Plasma in these conditions is called an afterglow plasma, and
is used for study of recombination and diffusion processes involving charged
and excited atoms.

A convenient way to generate plasma uses resonant radiation, that is,
radiation whose wavelength corresponds to the energy of atomic transitions
in the atoms constituting the excited gas. As a result of the excitation of the
gas, a high density of excited atoms is formed, and collision of these atoms
leads to formation of free electrons. Thus the atomic excitation in the gas
leads to its ionization and to plasma generation. This plasma is called a
photoresonant plasma. The possibility of generating such a plasma has im-
proved with the development of laser techniques. In contrast to a gas
discharge plasma, a photoresonant plasma is formed as a result of excitations
of atoms and therefore has special properties. In particular, the temperature
of the excited atoms can be somewhat in excess of the electron temperature.
This plasma has various applications: it is used for generation of multi-
charged ions, as a source of acoustic waves, and so on.

A laser plasma is created by laser irradiation of a surface and is character-
ized by parameters such as the laser power and the time duration of the
process. In particular, if a short (nanosecond) laser pulse is focused onto a
surface, material evaporates from the surface in the form of a plasma. If the
number density of its electrons exceeds the critical density (in the case of a
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neodymium laser, where the radiation wavelength is 1.06 wm, this value is
102! cm ~3), the evolving plasma screens the radiation, and subsequent laser
radiation goes to heating the plasma. As a result, the temperature of the
plasma reaches tens of electron volts, and this plasma can be used as a source
of X-ray radiation or as the source of an X-ray laser. Laser pulses can
be compressed and shortened to = 2 X 107" s. This makes possible the
generation of a plasma during very short times, and it permits the study of
fast plasma processes.

If the laser power is relatively low, the evaporating material is a weakly
ionized vapor. Then, if the duration of the laser pulse is not too short {(more
than 107° s), there is a critical laser power (10'-10% W /cm?) beyond which
laser radiation is absorbed by the plasma electrons, and laser breakdown of
the plasma takes place. For values of the laser power smaller than the critical
value, laser irradiation of a surface is a method for generating beams of
weakly ionized vapor. This vapor can be used for formation and deposition of
atomic clusters.

A widely used method of plasma generation is based on the passage of
electron beams through a gas. Secondary electrons can then be used for
certain processes. For example, in excimer lasers, secondary electrons are
accelerated by an external electric field for generation of excited molecules
with short lifetimes. The electron beam as a source of ionization is conve-
nient for excimer and chemical lasers because the ionization process lasts
such a short time.

A chemical method of plasma generation is the use of flames. The
chemical energy of reagents is spent on formation of radicals or excited
particles, and chemoionization processes with participation of active particles
generate charged particles. The transformation of chemical energy into the
energy of ionized particles is not efficient, so the degree of ionization in
flames is small.

Electrons in a hot gas or vapor can be generated by small particles. Such a
process takes place in products of combustion of solid fuels.

Introduction of small particles and clusters into a weakly ionized gas can
change its electrical properties because these particles can absorb charged
particles, that is, electrons and ions, or negative and positive ions can
recombine on these particles by attachment to them. This process occurs in
an aerosol plasma, that is, an atmospheric plasma that contains aerosols.
On the contrary, in hot gases small particles or clusters can generate
electrons.

Plasma can be created under the action of fluxes of ions or neutrons when
they pass through a gas. Ionization near the Earth's surface results from the
decay of radioactive elements which are found in the Earth’s crust. Ionization
processes and the formation of an ionized gas in the upper atmosphere of the
Earth are caused by energetic radiation from the Sun. Thus, methods of
plasma generation are many and varied, and lead to the formation of
different types of plasmas.
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1.3 PLASMAS IN LABORATORY DEVICES

Various laboratory devices and systems contain a plasma. This plasma is
called a low-temperature plasma or a hot plasma, depending on the tempera-
ture of the charged particles. In a hot plasma the thermal energy of the
atomic particles exceeds a characteristic atomic value (which may be the
ionization potential of the plasma atoms), and in a low-temperature plasma,
it is much less. Correspondingly, plasma devices containing hot plasmas or
low-temperature plasmas are different in principle. An example of a hot
plasma is a thermonuclear fusion plasma, that is, a plasma for a controlled
thermonuclear reaction. This reaction proceeds with participation of nuclei
of deuterium or of tritium—isotopes of hydrogen. In order to achieve this
reaction, it is necessary that during the time of plasma confinement, that is,
during the time when ions of deuterium or tritium are present in the reaction
zone, these ions have a chance to participate in a thermonuclear reaction.
Both a high ion temperature (about 10 keV) and a high number density of
ions must be present if the thermonuclear reaction is to proceed. The
threshold number density of ions (N,) for the thermonuclear reaction de-
pends on the plasma lifetime 7 in such a way that the product of these
values, N;7, must exceed a certain value. This condition is called the Lawson
criterion. At temperatures of several keV, the Lawson criterion corresponds
to an onset value of N;r = 10'® cm™? s for a deuterium plasma, and 10"
cm~? s for a deuterium-tritium plasma. These values are reached in contem-
porary plasma fusion devices.

The other method to solve the problem of thermonuclear fusion uses
pulsed systems. In this case a deuterium pellet is irradiated on its entire
surface by a laser pulse or a fast ion beam. When the pulse impinges on the
pellet, the pellet is heated and compressed by a factor 102~10°. The heating
and compression is intended to promote a thermonuclear fusion reaction.
Note that the dense hot plasma that is formed during compression of the
pellet is a special state of matter that does not have an analog in an ordinary
laboratory setting,.

A hot plasma is used in plasma engines. There, a flux of plasma causes the
motion of a system in the opposite direction according to Newton's third law.
The plasma flow velocities may attain 10® cm/s, and exceed by one or two
orders of magnitude the corresponding value for conventional chemical-fuel
engines. Therefore, despite producing power small compared to that of
chemical engines, plasma engines are used in space engineering where the
problem of the weight of fuel is critical.

The low-temperature plasma differs from a hot one in both its parameters
and its applications. Since the most widespread methods of plasma genera-
tion under laboratory conditions are based on gas discharges, most gas lasers
and light sources use such discharges. Let us first consider installations using
a low-temperature plasma for generation of electrical energy. The magneto-
hydrodynamic (MHD) generator uses a stream of hot, weakly ionized gas
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®B

(b)

Figure 1.4 A schematic diagram of an (a) MHD generator and (b) an ion engine. In
the first case the electric field is generated by the motion of a plasma in a magnetic
field. In the second case electrons and ions are accelerated as they pass through
crossed electric and magnetic fields.

flowing in a transverse magnetic field. This induces electric current in a
direction perpendicular to the directions of the stream and magnetic field, to
permit the system to transform the energy of flow into electrical energy (see
Fig. 1.4a). The efficiency of this transformation is quite high because the
flowing gas is hot. The principles of action of MHD generators and plasma
engines bear a resemblance to each other (see Fig. 1.4), and an MHD-gener-
ator may be adapted as a plasma engine (Fig. 1.4).

There are stationary MHD generators which may be used as components
of electric power stations, and there are pulsed MHD generators. The pulsed
MHD generator can be regarded as a gun where a weakly ionized plasma is
used instead of a shell. The plasma is formed as a result of combustion of
gunpowder or some equivalent source of propellant gas. When this plasma
passes through a region with an external magnetic field, electric power is
created. In order to estimate the possibilities of this system, let us make a
simple calculation. Assume the plasma velocity equals the velocity a bullet
acquires in a gun. Take the efficiency of energy transformation to be of the
order of 50%, and the length of the region with a magnetic field to be 1 m.
Then the specific power of this generator is of the order of 10® W /g, and the
pulse duration is = 7 X 10™* s. Thus the power of a pulsed MHD generator,
for this brief instant, corresponds to the total power of all the electric power
plants of the world if the mass of the powder used is of the order of 10 g. The
pulsed MHD generator transforms the chemical energy of the powder into
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electrical energy. Due to the simplicity and yield parameters of these systems,
they are convenient for special applications as autonomous pulsed sources of
electric energy.

The other system where a plasma is used for generation of electric energy
is the thermoemission converter. It contains two parallel metal plates with
different work functions (the work function is the binding energy of an
electron at a surface). One of these plates is heated and emits electrons
which reach the other plate. An electric current is created. Connection of the
plates through a load leads to the release of electrical energy in the load. It is
evident that a plasma is not the underlying basis for this device. Nevertheless,
the use of a plasma in the gap between the plates makes it possible to
overcome an important difficulty attendant on this system. If there is no
plasma in the gap, electron charge is accumulated in this region and creates
an electric potential between the plates that increases with electron number
density in the gap, and is opposite in direction to the potential that initiated
the phenomenon. Beyond a certain level the counterpotential will stop the
generation of electric energy. For typical energy fluxes in these systems (~ 1
W /cm?) the distance between plates must be less than 10 um. It is difficult
to combine this condition with a high temperature of the heated plate
(= 2000 K). Introduction of a plasma in the gap between plates provides a
means of overcoming this difficulty.

In various applications of a plasma with an intense input of energy, the
plasma is generated in a moving medium. The source of this plasma is called
a plasmatron or plasma generator. It is usually an arc discharge established
in a flowing gas or vapor. Such plasma generators produce plasma torches,
which have wide application to various technological problems, including
incineration of waste and special medical uses. Many plasma applications are
based on the possibility of introducing a high level of electrical energy into
the plasma. It leads to the creation and maintenance of an ionized gas
containing active atomic particles: electrons, ions, excited atoms, radicals.
These particles can be analyzed by a variety of techniques, and therefore a
plasma can used not only in energetic systems, but also in measuring
instruments. In particular, plasma-based methods of spectral analysis are
widely practiced in metallurgy. In these methods a small amount of metal in
the form of a solution or powder is introduced in a flowing discharge plasma,
and spectral analysis of the plasma makes it possible to determine the metal
composition. The accuracy of spectral determination of admixture concentra-
tion with respect to a primary component is of the order of 0.01-0.001%.

It is interesting that the principles of operation of MHD generators,
thermoemission converters, and plasmatrons were suggested as early as the
end of the nineteenth century. Now, with the advantage of contemporary
materials and technology, these devices have acquired a new life.

The optogalvanic technique in plasma diagnostics uses another principle.
The weakly ionized gas in a gas discharge (usually it is a glow gas discharge)
is irradiated by a tuned laser, and the discharge electric current is measured
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as a function of the radiation wavelength. If the laser radiation is resonant
with atomic transitions of atoms in the discharge plasma, this radiation
causes photoionization at a rate strongly dependent on the identity of the
atoms being irradiated. The measured effect is a change in the discharge
current. Thus, measured current jumps can be associated with the presence
of particular atoms in the discharge plasma. The degree of certainty in the
identification of the atom is greatly increased if many resonances can be
identified. The optogalvanic method makes it possible to identify admixtures
in a plasma with concentration of the order of 10~'"-10""* with respect to
the principal component of the plasma. An appreciation of the precision of
this method can be gained by noting that its accuracy is comparable to having
knowledge of the total population of the Earth to within an accuracy of
one individual. Thus, a plasma is a uniquely useful tool for a variety of
applications.

1.4 PLASMA IN CONTEMPORARY TECHNOLOGY

Plasmas are currently widely employed in industry, and their range of
application broadens continuously. The usefulness of plasmas in technology
can be ascribed to two qualities: Plasmas make available much higher
temperatures than can be achieved with chemical fuel torches; and a large
variety of ions, radicals, and other chemically active particles are generated
therein. Therefore, either directly within a plasma or with its help, one can
conduct technological or chemical processes of practical importance. Another
advantage of a plasma follows from the possibility of introducing large
specific energies in a simple fashion.

The oldest applications of a plasma as a heat-transfer agent are in the
welding and cutting of metals. Since the maximum temperature in chemical
torches is about 3000 K, they cannot be used for some materials. The arc
discharge (electric arc) makes it possible to increase this temperature by a
factor of three, so that melting or evaporation of any material is possible.
Therefore the electric discharge has been used since the beginning of this
century for welding and cutting of metals. Presently, plasma torches with
power up to 10 MW are used for melting iron in cupolas, for melting scrap,
for production of steel alloys, and for recovering steel in tundishes.

Plasma processing is used for extraction of metals from ores. In some
cases plasma methods compete with traditional ones which are based on
chemical heating. Comparing the plasma with chemical methods in cases
when either can be used, the conclusion is that plasma methods provide a
higher specific output, a higher quality of product, and a smaller amount
of waste, but require a larger energy expenditure and more expensive
equipment.

Another application of a plasma as a heat-transfer agent relates to fuel
energetics. The introduction of a plasma in the burning zone of low-grade
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coals leads to improvements in the efficiency of the burning with an accom-
panying reduction in particle emissions, in spite of a relatively small energy
input from the plasma. Plasmas are used also for pyrolysis and other methods
of processing and cleaning of fuel.

Plasmas have been employed extensively for the processing and treatment
of surfaces. The good heat-transfer capabilities of a plasma are useful for
treatment of surfaces. During plasma processing of surfaces the chemical
composition of the surface does not change, but its physical parameters may
be improved. Another aspect of the processing of a surface by a plasma
refers to the case when active particles of the plasma react chemically with
the surface. The upper layer of the surface can acquire a chemical composi-
tion different from that of the substrate. For example, plasma hardening of a
metallic surface occurs when metal nitrides or carbides are formed in the
surface layer. These compounds are generated when ions or active atoms in
the plasma penetrate into the surface layer.

A third mechanism for the plasma action on a surface is realized when the
surface material does not itself participate in the chemical process, but
material from the plasma is deposited on the surface in the form of a thin
film. This film can have special mechanical, thermal, electric, optical, and
chemical properties that are useful for specific problems and requirements.
It is convenient to use for this purpose plasma beams that flow from jets.
Such beams can give rise to clusters as a result of expansion of the beam. The
ion-cluster beam method is used for deposition of thin films. Because of
the smaller heat release during the deposition of clusters than during the
deposition of atoms, the ion-cluster beam method provides improved quality
of films formed thereby, even though ion-cluster beams have a lower intensity
than beams of atoms or atomic ions. Beam methods for deposition of
micrometer-thickness films are widespread in the manufacture of microelec-
tronics, mirrors, and special surfaces.

In addition to the deposition processes resulting from plasma flows con-
taining atoms or clusters, a plasma spraying process is used for deposition of
molten powder particles on a sample. The powder particles are introduced
into a plasma jet resulting from the passage of a gas through an arc
discharge. These particles are heated and accelerated in the plasma jet,
which is directed onto a target. Molten particles impinge with high velocities
on the surface, adhere, and form a covering layer.

An important area of plasma applications—plasma chemistry—relates to
production of chemical compounds. The first industrial plasmachemical
process was employed for ammonia production at the beginning of the
twentieth century. It was later replaced by a cheaper method that produced
ammonia from nitrogen and hydrogen in a high-temperature, high-pressure
reactor with a platinum catalyst. Another plasmachemical process is to
produce ozone in a barrier discharge. This method has been used for several
decades. Large-scale development of plasma chemistry was long retarded by
the required high power intensity. When other criteria became the limiting
factors, new plasmachemical processes were mastered. At present, the array
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of chemical compounds produced industrially by plasmachemical methods
includes C, H,, HCN, TiO,, Al,O,, SiC, XeF, KrF,, O,F, and many others.
Though the number of such compounds constitutes a rather small fraction of
the products of the chemical industry, this fraction is steadily increasing. The
products of a plasmachemical process may exist either in the form of a gas or
in the form of condensed particles. Plasmachemical industrial production of
ceramic-compound powders such as SiC and Si;N,, or powders of metals and
metal oxides, leads to an end product of high quality.

Plasmachemical processes with participation of organic compounds are
used as well as those with inorganic materials. Organic-compound applica-
tions include the production of polymers and polymeric membranes, fine
organic synthesis in a cold plasma, and so on. In a qualitative assessment
of the technological applications of plasmas, we conclude that plasma tech-
nologies have a sound basis and present prospects for important further
improvements.

Plasma processing for environmental applications is developing in two
directions. The first is decomposition of toxic substances, explosive materials,
and other hazardous wastes, which can be decomposed in a plasma into their
simple chemical constituents. The second is improvement of air quality. A
corona discharge of low power is used for this purpose. The discharge
generates active atomic particles such as oxygen atoms. These atoms have an
affinity for active chemical compounds in air, and react with them. Such
discharges also destroy microbes, but present no hazards to humans because
of the low concentrations of these particles.

1.5 TERRESTRIAL ATMOSPHERIC PLASMA

It is convenient to categorize plasmas occurring in nature as terrestrial
plasma (in the Earth’'s atmosphere or in near-Earth space), solar plasma, and
cosmic plasma. Properties of the plasma of the Earth’'s atmosphere depend
on the altitude of the atmospheric layer in which it occurs. At low altitudes
the plasma is maintained by ionization of air under the action of cosmic rays
and of atmospheric electric fields. Near the Earth's surface, a portion of the
ionization of air arises from the decay of radioactive elements of the Earth's
crust. Plasma in lower layers of the atmosphere is characterized by a low
density of charged particles. The presence of plasma is limited by the
tendency of electrons to attach quickly to oxygen molecules, forming negative
ions. Therefore, plasmas in the lower atmosphere contain negative charge in
the form of negative ions. If aerosol particles are present in air, ions may
attach to them. Therefore charged aerosol particles play a role in this plasma.

Atmospheric plasma underlies the electrical phenomena of the atmo-
sphere. One of them is lightning—electrical breakdown under the action of
electric fields in the atmosphere. Lightning is one of the processes in the
atmosphere which originate in the formation of clouds, and arises from
the charging of aerosols and clouds. As a result, electric fields occur in the
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atmosphere and cause the generation of electric currents and, in particular,
lightning. Another electrical phenomenon of the atmosphere is corona dis-
charge: the appearance of electric currents near conductors in a quiet
atmosphere. Under the influence of intense electric fields in wet atmospheric
air, these currents can cause the formation of Saint Elmo’s lights—a glow in
the vicinity of protruding objects. Electrical discharges in atmospheric air are
often associated with energetic natural phenomena of a nonelectrical nature,
such as volcanic eruptions, earthquakes, sandstorms, and waterspouts.

The majority of charged particles of the upper atmosphere are formed as a
result of photoionization of atomic oxygen or molecular nitrogen under the
action of the hard ultraviolet (UV) radiation from the Sun. This region of the
atmosphere is called the ionosphere. The existence of the ionosphere plays an
important role in terrestrial radio communications. It is responsible for the
reflection of radio signals from the atmosphere that makes possible propaga-
tion of radio waves to large distances.

The ionosphere is divided into a number of layers. The lowest of them is
called the D-layer, and occurs at altitudes in the range of 50-90 km. It
contains a rarefied plasma with the number density of charged particles on
the order of 102-10* cm 2. The negative charge of the D-layer arises from
negative ions. Charged particles penetrate the D-layer from the higher E and
F layers of the ionosphere, where they are generated by the action of UV
radiation from the Sun. The E-layer of the ionosphere exists at altitudes of
90-140 km. The F-layer of the ionosphere is usually divided into the F,-layer
(140-200 km) and the F,-layer (200-400 km). The number density of charged
particles in these layers is of the order of 10°-10°% cm™* in the daytime,
and the negative charge is in the form of electrons. These layers of the
ionosphere reflect radio signals and are the radio mirror of the Earth’s
atmosphere.

In these layers the beautiful phenomenon of the aurora is observed. This
phenomenon originates from charged-particle ejection from solar plasma.
The charged particles proceed to the Earth, where they come under the
influence of the Earth’s magnetic field. They move along the magnetic field
lines, and the more energetic particles can proceed to the vicinity of the
Earth's magnetic poles, where the magnetic lines of force are directed
perpendicular to the Earth surface. Where the magnetic field lines enter the
upper atmosphere, the electron component of the solar particles is stopped
by the convergence of the magnetic field lines as the magnetic pole is
approached, whereas the more massive solar protons penetrate into the
upper atmosphere along the magnetic lines of force. As they are braked as a
result of collisions with atmospheric atoms or molecules, these protons ionize
and excite atoms of the upper atmosphere. Radiation of metastable oxygen
and nitrogen atoms formed by these collisions creates the observed glow of
the aurora. Because the magnetic poles of the Earth are at high latitudes, the
aurora is observed in the region near the geographical poles.

Above the ionosphere the Earth is surrounded by a relatively cold plasma
named the plasmasphere and located at altitudes of 1000-20,000 km. This



14 PLASMA IN NATURE AND IN LABORATORY SYSTEMS

sV
Figure 1.5 Radiation belts near the Earth. Curves A4 define regions where fast
protons with energies of more than 30 MeV are captured. Curves B correspond to
regions in which slow electrons with an energy of 0.1-5 MeV are captured. Numbers
on the curves refer to particle fluxes expressed in cm~2s~!, R, is the Earth’s radius,
and x is the distance from the Earth,

plasma consists mainly of protons and electrons with a number density in the
range of 10°~10° cm . The plasma density decreases slowly with increasing
altitude, and then falls sharply by two orders of magnitude at the outer
boundary of the plasmasphere. This boundary is called the plasmapause.

The so-called radiation belts are located at a distance of several Earth radii
(see Fig. 1.5). Protons and electrons are captured by the magnetic field of the
Earth, and populate these belts.

Thus, the upper atmosphere of the Earth contains different types of
plasmas whose properties are determined by interaction of solar radiation
and particle flows with the Earth's fields and flows.

1.6 SOLAR PLASMA

The properties of solar plasma depend on where in the Sun it is located. The
Sun's core contains a plasma with a temperature of about 17 MK and a
number density of the order of 10 cm™>. As one moves from the center of
the Sun, the number density of particles in the plasma and its temperature
both decrease. The Sun's photosphere is of principal importance both for
Earth processes and for the solar energy balance. The photosphere is a thin
layer of the Sun whose thickness (about 1000 km) is small compared to the
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Sun’s radius, but that emits most of the energy radiated from the Sun. Hence
the temperature of this layer (about 6000 K) determines the yellow color of
the Sun and the temperature of the solar radiation that reaches the Earth.

The next layer of the solar atmosphere is the chromosphere, whose name is
owed to the red color observed on the disk of the Moon during a total eclipse
of the Sun. The temperature of the chromosphere decreases at first and then
increases with increasing distance from the Sun’s center. The density of the
solar atmosphere decreases with increasing distance from the Sun’s center.
The chromosphere is transparent because it is rarefied.

The next higher, more rarefied region of the Sun’s atmosphere is called
the solar corona. This beautiful name is suggested by the glow in this region
that is observed during a total eclipse of the Sun. The peculiarity of the solar
corona is its high temperature (~ 10° K). Therefore, the solar corona emits
hard UV radiation.

Because of its high temperature and small temperature gradient, the solar
corona is not stable. Expansion of the solar corona into space creates a
plasma flow directed outward from the Sun. This flow is called the solar
wind. The solar wind creates the interplanetary plasma and leads to various
phenomena in the upper terrestrial atmosphere. In particular, it is the origin
of the terrestrial aurora. At the location of the Earth, the solar wind moves
with a velocity of 200-900 km/s and is characterized by a proton flux of
108-10" ¢cm~2 s7! and a proton number density of 4-100 cm~>. The mean
proton temperature in the solar wind is 5 eV, and the mean electron
temperature is about 20 eV . Interaction of the solar wind with the Earth's
magnetic field gives rise to the magnetosphere of the Earth (see Fig. 1.6). Its
boundary is located at a distance of 8—12 Earth radii on the side facing the
Sun, and has a long tail extending from the other side. The solar wind flows
around the Earth along this boundary. The magnetic lines of force of the

Figure 1.6 The magnetosphere of the Earth. 1, Earth; 2, solar wind; 3, magnetic
lines of force; 4, shock wave; 5, magnetosphere boundary where the solar-wind
pressure is balanced by the pressure of the Earth’s magnetic field.
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terrestrial magnetic field rise almost vertically near the Earth’s poles. This
makes possible the penetration of plasma fluxes into the Earth’s atmosphere
in these locations. Therefore, magnetic storms in the upper atmosphere of
the Earth, and the aurora, are observed in this region.

There are in the Sun a number of phenomena that result from interaction
of the solar plasma with its magnetic fields. Spicules—separated columns of
moving plasma—are formed in the chromosphere and create chromospheric
bushes. With typical solar conditions, approximately 10° spicules are ob-
served simultaneously. Spicules result from reconnection of magnetic lines of
force. An increase in the magnetic field strength in some zones of the solar
atmosphere leads to scattering of gas on these zones, and causes the
formation of cylindrical structures in the plasma motion. This mechanism is
the basis for the generation of spicules.

Another structure of the solar plasma observed in the solar corona is the
prominence. Prominences are clots of dense plasma of different forms with
temperatures of the order of 10* K. They are generated as a result of
interaction of plasma streams with magnetic fields and propagate in a corona
from the chromosphere.

Solar flares are observed in an upper chromosphere or in corona. They are
a result of development of plasma instabilities, in particular, reconnection of
magnetic lines of force (see Chapter 13). Solar flares last several minutes. A
sharp increase of the plasma temperature in flares causes an increase in
emission of short-wave radiation. Solar flares generate short intense fluxes of
solar plasma and can strongly enhance the solar wind. Such signals reach the
Earth in 1.5-2 days, and cause magnetic storms and auroras in the terrestrial
atmosphere.

In summary, there are several varieties of solar plasma, and interaction of
the plasma with solar magnetic ficlds leads to the generation of a number
of phenomena and plasma structures. The astrophysical plasma to be found
in interstellar space and in stars is even more variegated, and may cause new
specific effects.

1.7 PLASMA WITH A CONDENSED PHASE

Various types of plasmas or ionized gases that contain clusters or small
particles have the properties of the encompassing medium altered by the
inclusions. Examples are a plasma with a dispersed condensed phase, and a
colloidal plasma. (Colloids are microspheres.) There are three types of
plasma with a condensed phase that are commonly encountered in nature
and in the laboratory. A plasma of the Earth’s atmosphere containing small
particles is called an aerosol plasma, and the particles themselves are known
as aerosols. Properties of the aerosol plasma and the influence of small
particles on its parameters depend on the altitude and on environmental
factors. In particular, dust and mist are dispersed bases of an aerosol plasma



PLASMA WITH A CONDENSED PHASE 17

near the Earth’s surface. At low altitudes, surface ions and small particles of
aerosol plasmas include molecules of water, sulfur dioxide, nitrogen oxides,
ammonia, salts of sulfur, and nitrogenic acids. At low altitudes, small dust
particles or small liquid drops may carry positive and negative charges, with
the number density of charged particles of the order of 10° cm ™3, Aerosols
collect atomic and molecular atmospheric ions. The presence of aerosols in
the atmosphere influences the properties of the plasma. The charged aerosols
fall due to gravity. This creates an electric current in the atmosphere, and
this electric current charges clouds. Therefore, the transport of charged
aerosols in the atmosphere is the basis of atmospheric electrical phenomena.

Two other types of plasma with small particles—a dusty plasma and a
cluster plasma—differ each from other by the stability of the inclusions.
Small particles of a dusty plasma are stable and are not destroyed by plasma
processes. For example, soot particles resulting from combustion of solid
fuels may be ionized due to high temperatures or may get a negative charge
due to attachment of electrons or negative ions. The electrical charge of the
soot particles can be used for their separation from the flow of gaseous
combustion products. Dusty plasmas also exist in astrophysical systems,
including interstellar clouds, where small dust particles account for about 1%
of the mass. Dust particles are of importance for the formation of stars and
planets. They also influence the interaction of comets with the solar wind,
where the particle charge is of importance.

Evolution of a cluster plasma is accompanied by cluster evaporation and
by growth resulting either from attachment of atoms or molecules to the
clusters or from their coagulation—the joining of two colliding particles.
Usually, the size of clusters or particles in a cluster plasma is less than that in
a dusty plasma because of the instability of clusters. Nucleation and evapora-
tion lead to the instability of uniform and nonuniform cluster plasmas, and
the size distribution function of clusters in a cluster plasma varies with time
(see Chapter 12). As an example of a cluster plasma, we can consider the
plasma in the positive column of an arc containing a buffer gas at high
pressure with a small component of the vapor of a refractory metal. Then,
metallic clusters are formed in the discharge region at moderate tempera-
tures, where the pressure of the metallic vapor is higher than the saturation
vapor pressure temperature. As clusters grow, their transport in a hot region
where they evaporate ceases, and all the vapor is transformed into clusters.
Since clusters grow in time, the cluster plasma is not stationary.



CHAPTER 2

STATISTICS OF A WEAKLY
IONIZED GAS

2.1 DISTRIBUTION FUNCTIONS

Determination of the statistics of a gas amounts to the analysis of the
distribution functions of the constituent particles of the gas. A plasma
consists of atoms or molecules with an admixture of charged particles, so in
this case our goal is to analyze the distributions of both neutral and charged
particles simultaneously. Since free electrons belong to the continuum in
atomic or molecular spectra, it is necessary to analyze equilibria in contin-
uum-—continuum, discrete—discrete, and discrete —continuum transitions in
both directions. We start from a general energy distribution for weakly
interacting particles in a closed system. In an ensemble of a large number of
particles, each of the particles is in one of a set of states described by the
quantum numbers /. The goal is to find the average number of particles that
are found in one of these states. For example, if we have a gas of molecules,
the problem is to find the molecular distribution in its vibrational and
rotational states. We shall treat problems of this type below.

Consider a closed system of N particles, so that this number does not
change with time. Denote the number of particles in the ith state by n, .
Then the condition of conservation of the total number of particles has the
form

N=1ZLn,. (2.1)

Since the system of particles is closed, that is, it does not exchange energy
with other systems, we require conservation of the total energy E of the
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particles, where

E =Y ¢n,, (2.2)
i

and g; is the energy of a particle in the ith state. In the course of the
evolution of the system, an individual particle can change its state, but the
average number of particles in each state stays essentially the same. Such a
state of a closed system is called a state of thermodynamic equilibrium.
Transitions of individual particles between states result from collisions
with other particles. The probability that a particle is found in a given state
(as well as the average number of particles in this state) is determined by
several variables. Denote by W(n,,n,,...,n;,...) the probability that n,
particles are found in the first state, n, particles are found in the second
state,..., n, particles are found in the ith state,... . We wish to calculate
the number of possible realizations of this distribution. First take the n,
particles for the first state from the total number of particles N. There are

N!
C"I = ———
NN =n)tn!
ways to do this. Next, select n, particles corresponding to the second state
from the remaining N — n, particles. This can be done in Cgz, ways.
Continuing this operation, we find the probability distribution to be

N!
W(n,,nz,...,n,-,...)=Const><T—_I7i!—, (2.3)

i

where Const is a normalization constant.

2.2 THE BOLTZMANN DISTRIBUTION

Let us determine the most probable number 7, of particles that are to be
found in a state i. We use the large-number hypothesis 7; > 1, and we
require that the probability W as well as its logarithm have maxima at
n; = n;. We then introduce dn, = n, — n,, assume that 7, > dn, > 1, and
expand In W over the interval dn; near its maximum. Using the relation

lnn'—ln( [‘[m) fdxlnx,

we have (d/dn)(In n!) = In n.
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On the basis of this relation, we obtain from formula (2.3)

InW(n,n,,...,n;,...) =InW(f, fiy,...,0,...)

dn?
-Ylnndn, - Y ——. 2.4
Einfidn - L3 (24)
The condition for this quantity to be maximal is

Y In7,dn, = 0. (2.5)

In addition to this equation, we take into account the relations following
from equations (2.1) and (2.2) that

Y.dn, =0, (2.6)
Y &, dn, = 0. (2.7)

Equations (2.5), (2.6), and (2.7) allow us to determine the average number
of particles in a given state. Multiplying equation (2.6) by —InC and
equation (2.7) by 1/T, where C and T are characteristic parameters of this
system, and adding the resulting equations, we have

&
Z(lnr‘z,——lnC+? dn; = 0.

i

Because this equation is fulfilled for any dn;, one can require that the
expression in the parentheses equals zero. This leads to the following
expression for the most probable number of particles in a given state:

n,=Cexp(—¢/T). (2.8)

This formula is called the Boltzmann distribution.

We now want to determine the physical nature of the parameters C and T
in equation (2.8) that follows from the additional equations (2.1) and (2.2).
From equation (2.1) we have C%,exp(—¢;/T) = N. This means that C is the
normalization constant. The energy parameter T is called the system temper-
ature and characterizes the average energy of a particle. Below we express
this parameter in energy units, and hence we will not use the dimensioned
proportionality factor—the Boltzmann constant k = 1.38 X 107'¢ erg/K—as
is often done. Thus the kelvin is the energy unit, equal to 1.38 X 107" erg
(see Appendix 2).

We can prove that at large i, the probability of observing a significant
deviation from 7; is small. According to equations (2.4) and (2.5) the
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requisite probability is

—\2
n; —
W(n,n,,...,n;...) = W(r‘zl,r_zz,...,r'z,-,...)exp(—Z(———l).

i i

From this it follows that a significant shift of »; from its average value 7, is
In, — 7i,| ~ 7i7. Since 7, > 1, the relative shift of the number of particles in
one state is small: |n, — 7,|/7, ~ 1/7i}. Thus the observed number of parti-
cles in a given state differs little from its average value.

2.3 STATISTICAL WEIGHT OF A STATE AND DISTRIBUTIONS OF
PARTICLES IN GASES

In the above work, a subscript / related to one state of a particle. Below we
consider a general case where [ characterizes a set of degenerate states. We
introduce the statistical weight g, of a state that is one of a number of
degenerate states i. For example, a diatomic molecule in a rotational state
with the rotational quantum number J has the statistical weight g, = 2J + 1,
equal to the number of momentum projections on the molecular axis.
Including the accounting for the statistical weight, equation (2.8) takes
the form

n, = Cgexp(—¢/T),

where C is the normalization factor and the subscript j refers to a group of
states. In particular, this formula gives the relation between the number
densities N, and N, of particles in the ground and excited states, respec-
tively:

N; = Ny(g;/8v)exp (= ;/T), (2.9)

where ¢ is the excitation energy, and g, and g; are the statistical weights of
the ground and excited states.

We now determine the statistical weights of states in a continuous spec-
trum. The wave function of a free particle with a momentum p, moving
along the x-axis is given by exp (ip,x/#) (to within an arbitrary factor) if the
particle is moving in the positive direction, and by exp (—ip,x/#) if the
particle is moving in the negative direction. (The quantity # = 1.054 x 10~%
erg s is the Planck constant £ divided by 27r.) Suppose the particle is in a
potential well with infinitely high walls. The particle can move freely in the
region 0 <x < L, and the wave function on the walls goes to zero. To
construct a wave function that corresponds to free motion inside the well and
goes to zero at the walls, we superpose the basic free-particle solutions, so
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that ¢ = C,exp (ip,x/#) + C,exp (—ip,x/#). From the boundary condition
#(0) = 0 it follows that = Csin(p,x/#), and from the second boundary
condition (L) =0 we obtain p L /A = mwn, where n is an integer. This
procedure thus yields the allowed quantum energies for a particle moving in
a rectangular well with infinitely high walls.

From this it follows that the number of states for a particle with a
momentum in the range from p, to p, + dp, is given by dn = Ldp,/Qnh),
where we take into account the two directions of the particle momentum. For
a space interval dx, the number of particle states is

d . & 2.10
n=—-_- (2.10a)
Generalizing to the three-dimensional case, we obtain
dp, dx dp, dy dp, dz dpdr
an =2 o ®z_ P (2.10b)

2nh 2k 2wk (2wh)

Here and below we use the notation dp = dp, dp, dp,, dr = dxdydz. The
quantity dp dr is called a differential element of the phase space, and the
number of states in Egs. (2.10) is the statistical weight of the continuous
spectrum states, because it is the number of states for an element of the
phase space.

Let us consider now some cases of the Boltzmann distribution of particles.
First we analyze the distribution of diatomic molecules in vibrational and
rotational states. The excitation energy for the vth vibrational level from the
ground state of the molecule is given by % wo if the molecule is modeled by a
harmonic oscillator. Here #iw is the energy difference between neighboring
vibrational levels. On the basis of Eq. (2.9) we have

N, = Nyexp(—fiwv/T), (2.11)

where N, is the number density of molecules in the ground vibrational state.
Because the total number density of molecules is

s il fwv N,
N = N, =N, exp(— )= ,
lgo Ougo T 1 —exp(-tw/T)

the number density of excited molecules is then

_ exp(—hwv/T)
No=Niz exp(—Aw/T)’ (2.12)

The excitation energy of the rotational state with angular momentum J is
given by BJ(J + 1), where B is the rotational constant of the molecule. The
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statistical weight of this state is 2J + 1. Using the normalization condition
Y;N,; =N, and assuming B < T (as is usually the case), the number
density of molecules in a given vibrational-rotational state is

BI(] +1)

- (2.13)

N, = NU(—I;—)(N + 1)exp (—

As an example of the particle distribution in an external field, let us
consider the distribution of particles in the Earth’s gravitational field. In this
case Eq. (2.9) gives N(x) ~ exp(—U/T), where U is the potential energy of
the particle in the external field. For the gravitational field we have U = mgh,
where m is the mass of the molecule, g is the free-fall acceleration, and 4 is
the altitude above the Earth’s surface. Equation (2.9) then has the form

N(h) = N(O)exp(—mgh/T), (2.14)

where N(z) is the number density of molecules at an altitude z. This is called
the barometric distribution. For atmospheric air at room temperature, we have
mg = 0.11 km ™. That is, atmospheric pressure falls noticeably at altitudes of
a few kilometers.

2.4 THE MAXWELL DISTRIBUTION

We now consider the velocity distribution of free particles. This distribution
is the end result of energy-changing collisions of the particles. The Boltz-
mann formula (2.9) provides the necessary information. In the one-dimen-
sional case, the particle energy is mu?, and the statistical weight of this state
is proportional to dv,, that is, to the number n(v,) of particles whose velocity
is in the interval from v, to v, + dv,. Equation (2.9) then yields

d C o d

n(v)duv, = Cexp| — o7 | 4o

where C is the normalization factor. Correspondingly, in the three-dimen-
sional case we have

dv==C mo’ d

n(v)dv = Cexp| — == | dv,

(v) )

where the vector v has components v,, v,, v,; dv =dv, dv, dv,; and the
kinetic energy of the particle mv?/2 is the sum of the kinetic energies for all
the directions of motion. In particular, for the number density of particles
N(v) we have, after using the normalization condition,

N(v) =N(2’:—T)3/Zexp(—%:), (2.15)
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where N is the total number density of particles. When we introduce the
function ¢(v,) ~ n(v,), normalized so that

m

[ otoydn =1, e(s) = (5oz) ew (— e ) (2.16)

_ 2#T 2T

then

2

m 32 mu
N(v) = Ne() e(1,) 9(2,) = N(m) exp (_7),

These particle velocity distributions are called Maxwell distributions. The
average kinetic energy of particles following from Eq. (2.15) is
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This is to be combined with the result

[e<]

1 f (mv?/2)exp [ —muv? /(2T)] dv,

fx exp [—muf/(ZT)] dv,

d | o mv? J
T 4,7 nf ew| =]

———In(aT'?) = !
d(1/T) 2’

where the constant a does not depend on the temperature. Thus, the particle
kinetic energy per degree of freedom is T/2, and correspondingly the
average particle kinetic energy in the three-dimensional space is mv?/2 =
3T /2. These relations can be used as the definition of the temperature.

2.5 THE SAHA DISTRIBUTION

We considered above the distributions of gas particles in bound or free
states. Now we analyze the specific distribution for plasma systems that
contain both bound and free electron states. We must examine the equilib-
rium between continuous and discrete electron states. This equilibrium is
maintained by the processes

At+e e A,

where e is the electron, A™ is the ion, and A is the atom. We consider a
quasineutral plasma in which the electron and ion number densities are the
same.



THE SAHA DISTRIBUTION 25

Consider an ionized gas in a volume (), and denote the average number of
electrons, ions and atoms in this volume by n,, n;, and n, respectively (and
note that n, = n; here). Equation (2.9) gives the ratio between free and
bound states of electrons as

i 8e8i 1 f p( J+p?/2m,
n, 8 (2wh)’ T
Here g, = 2, g,, and g, are the statistical weights of electrons, ions, and
atoms corresponding to their electronic states, J is the atomic ionization
potential, and p is the free-electron momentum, so that J + p?/(2m,) is
the energy of transition from the ground state of the atom to a given state
of a free electron. It is assumed that atoms are to be found only in the
ground state.
Integration of this expression over electron momenta yields

n; 88i meT 2 J
- - e — =\ {ar.
en = B I

a

)dp dr.

Integrating over the volume, we take into account that transposition of the
states of any pair of electrons does not change the state of the electron
system. Therefore [dr = {}/n,. Introducing the number densities of elec-
trons (N, = n,/8), ions (N, = n,/€}), and atoms (N, = n,/€}), we deduce
for ionization equilibrium that

NeNi gegi ( mpT 32 ( ‘] )
N, g \2a#? ) R
This result is called the Saha distribution.

We can write the Saha distribution in the form of the Boltzmann distribu-
tion (2.9) as

(2.17)

Ni gc J
V = g—exp —?), (218)
where
gegi( meT 2
Y] 21rﬁ2)

is the effective statistical weight of the continuous spectrum. For an ideal
plasma, this statistical weight is rather large because the electron number
density N, is small compared to a typical atomic number density. This leads
to the following conclusions: Even at relatively small temperatures, T < J,
some atomic ionization occurs. However, the probability of atomic excitation
is very small at these temperatures; that is, the number density of excited
atoms is small. Hence, at these temperatures, atoms are either in the ground
state or are ionized.
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2.6 DISSOCIATIVE EQUILIBRIUM IN MOLECULAR GASES

Equilibrium between atoms and molecules in a molecular gas is maintained
by the processes
X +Y o XY.

This equilibrium bears an analogy to the equilibrium between discrete and
continuous spectral states corresponding to bound and free states of atoms.
We can find the relation between the equilibrium number densities of atoms
and molecules in this case by analogy with the Saha distribution. On the basis
of Eq. (2.17), we can express the relationship between the number densities
of atoms and molecules in the ground state as

Nx My _ Exgy( KT )3/26x (_2) (2.19)
Ney(0=0,7=0)  gxy \ 278 P\TT ) '

where gy, gy, and gy are the statistical weights of atoms and molecules
with respect to their electron states, u is the reduced mass of atoms X and
Y, and D is the dissociation energy of the molecule.

In contrast to the ionization equilibrium of atoms, in this case most
molecules are found in excited states. Using Eqs. (2.12) and (2.13), which
connect the number density of molecules in the ground state to their total
number density, we can transform Eq. (2.19) for dissociative equilibrium to
the form

Nx Ny gxgv( rT )3/2 B ho D
= - -— -=1, (2.20
Nxy  gxy \2mh (T) e"p( T)e"p( T)’( )

where Ny, is the total molecular number density.

2.7 LAWS OF BLACKBODY RADIATION

An ionized gas contains excited atoms or molecules that emit radiation, so it
is necessary to examine how the gas interacts with radiation. If the interac-
tion of radiation with a gas is strong, the distance that an individual photon
travels before being absorbed is small. Then we deal with so-called equilib-
rium radiation. Radiation in a vessel whose walls are at a temperature T will
be absorbed and emitted by the walls, and these processes establish the
equilibrium between the radiation and the walls of the vessel. This radiation
is called blackbody radiation.

To calculate the average number of photons in a particular state, we use
the fact that photons obey Bose—Einstein statistics. Therefore the presence
of a photon in a given state does not depend on whether other photons of
this energy are also in this state. Then according to the Boltzmann formula
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(2.9), the relative probability that n photons of an energy A w are found in a
given state is equal to exp (—f wn /T). Thus the mean number of photons in
this state is

_  Lynexp(—tfon/T) 1
"o T Y exp(—fon/T)  exp(hw/T) — 1

(2.21)

This formula is called the Planck distribution.

We introduce the spectral radiation density U, as the radiation energy per
unit time and volume in a unit frequency range. We shall show below how
this quantity can be determined. The radiation energy in the frequency
interval from o to w + dw is QU, dw. Alternatively, this quantity can be
expressed as 2 wn ) dk/(27)*, where the factor 2 takes account of the two
polarizations of an electromagnetic wave, k is the photon wave vector, n, is
the number of photons in a single state, and Q dk/(27)* is the number of
states in an element of the phase space. Using the dispersion relation w = ck
between the frequency w and wave number & of the photon (c is the light
velocity), the equivalence of these two aspects of the same quantity yields
the result

(2.22)

When the Planck distribution (2.21) is inserted into Eq. (2.22), we obtain the
Planck radiation formula

= ho! 2.23
b = w23 exp (how/T) — 1] (223)

In the limiting case Aw < T, this result transforms to the Rayleigh—Jeans
formula

U, = ho <T. (2.24)

This expression corresponds to the classical limit, and hence does not contain
the Planck constant. The opposite limit yields the Wien formula

o’ ho
U = —2—36xp(—T), o > T. (225)

¢ me

We shall now apply Eq. (2.23) to find the radiative flux emitted by a
blackbody surface. It may be defined as the flux of radiation coming from a
hole in a cavity with perfectly absorbing walls when this cavity contains the
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blackbody radiation. The blackbody surface emits an isotropic flux ¢fyU, dw,
so that the energy flux

do =
EC[) dew

is radiated into the element of solid angle d® = d¢dcosf. Taking the
projection of the radiation flux onto the direction perpendicular to the
emitting surface, we find that the radiative flux leaving the emitting surface is

ks © C C <]
J=f0/2f0 Z;dew21rc056dcoso=zf0 Udw=0oT* (2.26)

where 6 is the angle between the normal to the surface and the direction of
motion of an emitted photon. The constant o is called the Stefan—Boltzmann
constant. It is given by

Lol me ™ _serxaon

= = ——— =567X .
7T Gk f(, -1 60c 24’ cm? K*
Equation (2.26) is called the Stefan—Bolizmann law.

One can evaluate the functional dependence of the radiation flux (2.26) in
a simple way on the basis of dimensionality considerations. The result must
depend on the following parameters: T (the radiation temperature), % (the
Planck constant), and c¢ (the light velocity). From these parameters one can
compose only one combination that has the dimension of a flux. It is
J ~ T*h~3c 2, consistent with Eq. (2.26).

2.8 IONIZATION EQUILIBRIUM IN AN AEROSOL PLASMA

Plasma properties can be influenced by the presence in the plasma of small
particles on a variety of size scales, including atomic and molecular clusters.
We shall refer to all such small bulk particles as aerosols, and to the plasma
containing them as an aerosol plasma, although the size of the particles can
have an influence on the plasma properties. One such plasma property is the
ionization equilibrium. The presence of small particles in a hot gas may alter
the ionization equilibrium because the electron binding energy with a surface
is smaller than the ionization potential of atoms constituting this surface. For
example, the ionization potential of copper is 7.73 eV, while its work function
—the electron binding energy with a copper surface—is 4.40 eV. The
corresponding values are 7.58 and 4.3 eV for silver, and 3.89 and 1.81 eV for
cesium. Thus the presence of such particles in a hot vapor alters the
equilibrium density of charged particles. We assume in the following that
electrons in a hot gas or vapor result from small particles only. Our goal is to
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determine the equilibrium charge of these particles and the number density
of electrons in a plasma.

For simplicity we assume all particles to be spherical and to have the same
radius ry. This radius is taken to be sufficiently large that

ro > e*/T. (2.27)

This criterion allows us to consider a particle as bulk matter, rather than
needing to describe its microscopic properties. The addition of a single
electron to the aerosol particle makes only a slight difference in the electric
potential of the particle. We use this fact to write the relationship between
the number densities of particles n, and n,,, that possess charges Z and
Z + 1 respectively. By analogy with the Saha distribution (2.17), we have

nzN, 2( m,T \*/? ( W, 228
N 2vrﬁ2) P T)’ (2:28)

where W, is the electron binding energy for the particle with the charge
Z, N, is the electron number density, and the factor 2 takes account of the
electron statistical weight (two spin projections). The electron binding energy
W, for a charged particle is the sum of the electron binding energy W, for
the neutral particle of a given material and the potential energy of the
charged particle. Using the electric potential for a particle of charge Z + 1
(the average between Z and Z + 1), we have

W, =W, + (Z + 3)e*/r,.
Substituting this into Eq. (2.28) transforms it to the form

nzN, (meT )3/2 ( W, (z+%)e2)
2 exp — .

T roT

(2.29)

= 2
n2+1 27Tﬁ

This relation gives the charge distribution of the charged particles. If the
average charge is large, this distribution is sharp. Specifically, introducing n,
—the number density of neutral particles—into Eq. (2.29) leads to

e? 47 Z%e?
r T = Mo exp 2r,T )’

where 4 = (2/N,)m,T/Quh*)*/?exp(—W,/T). For charges that are close
to the average, this relationship is conveniently written in the form

ny =n,_,Aexp

(Z—Z)z)

nZ=nzexp(ﬂ 2A22
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where AZ? =rT/e* > 1 because of (2.27). The average charge of the
particles follows from the relation Ze? /(r,T) = In A , which gives

2 ( m, T\ w
n ﬁ(z—q‘rﬁ—z) exp(—7) . (2303)

This result must be combined with the condition for plasma quasineutrality if
electrons result from ionization of small particles:

— T
Z=—1
o2

N, = Zn, (2.30b)

where n is the total number density of particles. Combining these equations
to remove the electron number density, we find the average charge of the
particles to be

2 (mT)3/2

Zn \2m#k?

— T
Z=—Tll'1 T

7
- = (2.31)

2.9 THERMOEMISSION OF ELECTRONS

For high temperature or large particle size, the parameter Ze?/(r,T) be-
comes small. For example, at r, = 10 um and T = 2000 K, the very large
particle charge Z = 1200 would be required to make this parameter unity. If
the parameter is small, then it follows from Eq. (2.30a) that

N, = ( il )mexp (——u:). (2.32)

2mh? T

(Here and below we omit the subscript 0 on the work function W.) This is the
Richardson—Dushman formula, describing the equilibrium density of electrons
above a flat surface. In this case the electric potential of the particle is small
compared to a typical thermal energy. Therefore the conditions near the
particle and far from it are identical. Then the average particle charge is
determined by Eq. (2.30b), where number densities of electrons and of
particles are both known.

Equation (2.32) allows us to obtain a simple expression for the electron
current from the surface of a hot cathode. In the case of equilibrium between
electrons and a hot surface, the electron current from the surface is equal to
the current toward it. Assuming the probability of electron attachment to the
surface to become unity upon contact, we obtain for the electron current
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TABLE 2.1. Parameters for Electron Thermoemission from Metals?

Material Ag, A/(em? K?) W, eV T,, K iy, A/cm?
Ba 60 2711 1910 600
C 30 434 4070 2100
Cs 160 1.81 958 0.045
Cu 60 4.57 2868 4.6
Hf 14 353 5470 2.4 x 10°
Mo 51 42 5070 8.8 x 10*
Nb 57 3.96 5170 2.1 % 10°
Pd 60 4.9 3830 240
Re 720 4.7 5870 23 x 10°
Ta 55 42 5670 3.3 x 10°
Th 70 3.38 4470 22 x10°
Ti 60 3.86 3280 750
w 75 45 5740 2.8 x 10°
Y 100 3.27 3478 35 x 10°
Zr 330 4.12 4650 2.4 x 10°

*The boiling point of elemental materials is T}, and i}, is the electron thermoemission current at
the boiling point (Neuman 1987).

density towards the surface (equal to the electron current density from the
surface)

i T Y/ em,T? W) 533
T 2am, | T 47r2ﬁ3exP( T) (233)
This result is also known as the Richardson—Dushman formula, and this type
of emission is called thermoemission of electrons. For the analysis of gaseous
discharge problems, it is convenient to rewrite the Richardson-
Dushman formula (2.33) for the thermoemission current density in the form

i=AgT%exp(-W/T), (2.34)

wherein the Richardson parameter Ay, according to Eq. (2.33), has the value
120 A/(cm? K?). Table 2.1 contains the values of this parameter for real
metals. In this table W is the metal’s work function, T, is its boiling point,
and i, is the current density at the boiling point.

2.10 THE TREANOR EFFECT
A weakly ionized gas can be regarded as a system of weakly interacting

atomic particles. This system can be divided into subsystems, and in the first
approximation each subsystem can be considered as an independent closed
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system. The next approximation, taking account of a weak interaction be-
tween subsystems, makes it possible to establish connections among subsys-
tem parameters. There are a variety of ways in which this connection can be
done, with the selection depending on the nature of the problem. Often it is
convenient to divide an ionized gas into atomic and electronic subsystems.
Energy exchange in electron—atom collisions is slight due to the large
difference in their masses, so equilibrium within the atomic and electronic
subsystems is established separately. If a weakly ionized gas is in an external
electric or electromagnetic field, the result is different electronic and atomic
temperatures. It means that both atoms and electrons can be characterized
by Maxwell distributions for their translational energies, but with different
mean energies.

Another example of weakly interacting subsystems, which we shall con-
sider below, relates to a molecular gas in which exchange of vibrational
energy between colliding molecules has a resonant character. This is a more
effective process than collisions of molecules with transitions wherein vibra-
tional energy is transferred to excitations in rotational and translational
degrees of freedom. If vibrational and translational degrees of freedom are
excited or are cooled in different ways, then different vibrational and
translational temperatures will exist in such a molecular gas. This situation
occurs in gas-discharge molecular lasers, where vibrational degrees of free-
dom are excited selectively; and in gasdynamical lasers, where rapid cooling
of translational degrees of freedom occurs as a result of expansion of a gas.
The same effect occurs in shock waves and as a result of the expansion of
jets. There is a thus a wide variety of situations where a molecular gas is
characterized by different vibrational and translational temperatures. How-
ever, the resonant character of exchange of vibrational excitation takes place
only for weakly excited molecules. At moderate excitations, the resonant
character is lost because of molecular anharmonicity. This leads to a particu-
lar type of distribution of molecular states, which we shall now analyze.

We consider a nonequilibrium gas consisting of diatomic molecules where
the translational temperature T differs from the vibrational temperature T,.
The equilibrium between vibrational states is maintained by resonant ex-
change of vibrational excitations in collisions of molecules, as expressed by

M(v)) + M(v,) & M(v}) + M(v3), (2.35)

where the quantities in the parentheses are vibrational quantum numbers,
Assuming molecules to be harmonic oscillators, we obtain from this the
condition

v, + v, =V + 0.

The excitation energy of a vibrational level is
2
E,=to(v+3) - thox(v+3),

where o is the harmonic oscillator frequency, and x,. is the anharmonicity
parameter. The second term of this expression is related to the establishment
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of equilibrium in the case being considered, where translational and vibra-
tional temperatures are different. Specifically, the equilibrium condition
(2.35) leads to the relation

N(v ) N(vy)k(v, 0, = v, 03) = N(0)) N(03)k( 0}, 03 = 01,0,),

where N(v) is the number density of molecules in a given vibrational state,
and k(v,, v, = v}, Vy) is the rate constant of a given transition. Because these
transitions are governed by the translational temperature, the equilibrium
condition gives

k(v 0, = 0y, 0y) = k(U 0 = 0,,0,)exp (AE/T),

where AE = AE(v)) + AE(v,) — AE(v)) — AE(1,) is the difference of the
energies for a given transition, and AE(v) = —fwx, (v + 3)°. From this, one
finds the number density of excited molecules to be

hwv  fRoexo(v+1)
N(v) = Nyexp | — T + T , (2.36)

v

where N, is the number density of molecules in the ground vibrational state.
This formula is often called the Treanor distribution.

Equation (2.36) gives a nonmonotonic population of vibrational levels as a
function of the vibrational quantum number. Assuming the minimum of this
function to correspond to large vibrational numbers, we have for the position
of the minimum

LT 1 2.37
L= —— > .
Umln zxc T ? ( )

4

and the minimum number density of excited molecules is given by

hwvy,
27, '

N( i) = Noexp ( -

Below we give the values of the first factor in Eq. (2.37) for some molecules:

Molecule l H, OH CcoO N, NO 0,
1/Qx) | 18 22 82 84 68 66

The effect considered is remarkable at v ~ 10 in terms of the distinction
between vibrational and translational temperatures.

Thus, the special feature of the Treanor effect is that at high vibrational
excitations, collisions of molecules with transfer of vibrational excitation
energy to translational energy become effective. This causes a mixing of
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vibrational and translational subsystems, and invalidates the Boltzmann dis-
tribution for excited states as a function of vibrational temperature. Note that
the model employed is not valid for very large excitations because of the
vibrational relaxation processes.

2.11 NORMAL DISTRIBUTION

A commonly encountered case in plasma physics as well as in other types of
physics is one in which a variable changes by small increments, each of which
occurs randomly, and the distribution of the variable after many steps is
studied. Examples of this are the diffusive motion of a particle and the
energy distribution of electrons in a gas. This energy distribution as it occurs
in a plasma results from collisions of electrons with atoms, with each collision
between an electron and an atom leading to an energy exchange between
them that is small because of the large difference in their masses. Thus, in a
general statement of this problem, we seek the probability that some variable
z has a given value after n > 1 steps, if the distribution for each step is
random and its parameters are given.

Let the function f(z, n) be the probability that the variable has a given
value after n steps, with ¢(z,) dz, the probability that after the kth step the
change of the variable lies in the interval between z; and z, + dz,. Since
the functions f(z) and ¢(z) are probabilities, they are normalized by the
condition

ff fzom)dz = [ g(z)dz=1.

By definition of the above functions we have

fzm) = [ dzy o [ e, TTe(2,),

and
z= Y z. (2.38)
We introduce the Fourier transforms

G(p) = [ F(2)exp(~ip2) dz,

8(p) = [ e(2)exp (=ip2) dz, (2.39)

which can be inverted to give

1 =
f(z) = 5— [ G(p)exp (ipz) dp,

1 =
e(2) = 5= [ g(p)exp (ipz) dp.
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Equation (2.39) yields

g(0) = [mf(z)dz -1,

g(0) = ~if ze(z)dz = ~iz, (2.40)

g'(0) = —zZ,

where Zz,, z} are the mean shift and the mean squared shift of the variable
after one step. From Eqgs. (2.38) and (2.40) it follows that

G(p) = fzexp(—ipk:i ) [T otz da = (),

- = k=1

and hence

1 o 1 o
f(2) = 5= [ &"(p)exp (ipz) dp = — [ exp(ning + ipz) dp.

Since n > 1, the integral converges at small p. Expanding In g in a power
series in p, we have

— — —\2
ng =1 - mp— 22| - B, B
§ P T 2
which gives the result
(R nzip?
f(2) = 5[ exp (tp(nzk —z) = ——|dp
1 (z -:z)
27A? 24

In this expression, Z = nz, is the mean shift of the variable for n steps, 7%=
nz}, and A? =z? — (2)? is the root-mean-square deviation of this value.
Formula (2.41) is called the normal distribution, or the Gaussian distribution.
It is valid if the principal contribution to the integral (2.40) comes from small
values of p, that is, if zp < 1 and z7p? < 1. Because this integral is
determined by nzlp? ~ 1, the Gaussian distribution is valid for a large
number of steps n > 1.



CHAPTER 3

THE IDEAL PLASMA

3.1 CONDITIONS FOR AN IDEAL PLASMA

We shall consider primarily a plasma whose properties are similar to those of
a gas. As in a gas, each particle of the plasma will follow a straight trajectory
as a free particle most of the time. These free-particle intervals will occasion-
ally be punctuated by strong interactions with surrounding particles that will
cause a change in energy and direction of motion. This situation obtains if
the mean interaction potential of the particle with its neighbors is small
compared to the mean kinetic energy of the particle. This is the customary
description of the gaseous state of a system, and a plasma that also satisfies
this description is called an ideal plasma.

We now wish to formulate a quantitative criterion for a plasma to be ideal.
The Coulomb interaction potential between two charged particles has the
absolute value |U(R)| = e?/R, where e is the charge of an electron or singly
charged ion, and R is the distance between interacting particles. Thus the
interaction potential at the mean distance between particles (R, ~ N, ') is
equal to |U| ~ ¢>N,'/?, and because the mean thermal energy of the particles
is of the order of T (the plasma temperature expressed in energy units), the
condition for a plasma to be ideal is

y=Ne'/T? <1, (3.1)

where y is called the plasma parameter. In the following, we shall deal
primarily with a plasma whose parameters satisfy the relation (3.1).

36
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3.2 CHARGED PARTICLES IN A GAS

We define a weakly ionized gas as a gas with a small concentration of
charged particles. Nevertheless, some properties of the weakly ionized gas
are governed by the charged particles. For example, the degree of ionization
of power discharge molecular lasers is 1077-107>. In these lasers, the energy
is first transferred from an external source of energy to electrons, and then it
is transformed to the energy of laser radiation. As we shall see, a relatively
small concentration of electrons determines the operation of this system.

Some properties of a weakly ionized gas are determined by the interaction
between charged and neutral particles, while other properties are due to
charged particles only. Though the concentration of charged particles in a
plasma is small, the long-range Coulomb interaction between them may be
more important than a short-range interaction between neutral particles. We
consider below the plasma properties that are associated with the presence of
charged particles. The short-range interaction of neutral particles is not
important for these properties.

3.3 PENETRATION OF ELECTRIC FIELDS INTO PLASMAS

We wish to study the penetration of an externally produced electric field into
a plasma. Since this field leads to a redistribution of the charged particles of
a plasma, it creates an internal electric field that opposes the external field.
This has the effect of screening the plasma from the external field. To
analyze this effect, we begin with the fact that an electric field in a plasma is
determined by the Poisson equation

V-E=-A¢p=4me(N, — N,). (3.2)

Here E = — Vo is the electric field strength, ¢ is the potential of the electric
field, N, and N, are the number densities of electrons and ions respectively,
ions are assumed to be singly charged, and A is the Laplacian operator. The
effect of an electric field is to cause a redistribution of charged particles.
According to the Boltzmann formula (2.9), the ion and electron number
densities are given by

N; = Neexp (—e¢/T), N, = Noexp(ee/T}), (3.3)
where N, is the average number density of charged particles in a plasma, and
T is the plasma temperature. Substitution of Egs. (3.3) into the Poisson

equation (3.2) gives

Agp = 8w Nyesinh(ep/T).
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Assuming that ep < T, we can transform this equation to

Ao = ¢/rp, (3:4)
where
T '
rp = (Sa'r—Neez) (3.5)

is the so-called Debye—Hiickel radius.

The solution of Eq. (3.4) describes an exponential decrease with distance
from the plasma boundary. For example, if an external electric field pene-
trates through a flat boundary of a uniform plasma, the solution of equation
(3.5) has the form E = E;exp(—x/rp), where x is the distance from the
plasma boundary in the normal direction.

When the electron and ion temperatures are different, then Eq. (3.3) has
the form

Ni =N()exp(_e<P/Ti)’ Ne=N()exp(e<P/Te)’

and we will obtain the same results as above, except that the Debye—Hiickel
radius takes the more general form

b = [47NyeX(1/T, + 1/T)] ', (3.6)

Now let us calculate the field from a test charge placed in a plasma. In this
case the equation for the potential due to the charge has the form

where r is the distance from the charge considered. If this charge is located
in a vacuum, the right-hand side of this equation is zero, and the solution has
the form ¢ = g/r, where q is the value of the charge. Requiring the solution
of the above equation to be coincident with this one at r — 0, we obtain for
the potential of a test charged particle in a plasma

Q= gexp( ’ ) (3.7)

I'np

Thus, the Debye—Hiickel radius is a typical distance at which fields in a
plasma are shielded by its charged particles. The field of a charged particle is
eliminated on this scale by fields of surrounding particles.

Now we shall check the validity of the condition e¢p < T, which allowed
us to simplify the equation for the electric field strength. Because this
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condition must work at distances of the order of rp, it has the form

e? e®N, 12
_—~ | — < 1.
roT T}

This condition coincides with the condition (3.1) for an ideal plasma.

We can determine the number of charged particles that participate in
shielding the field of a test particle. This value is of the order of magnitude
of the number of charged particles located in a sphere of radius ry. The
number of charged particles is, to within a numerical factor,

raNy ~ Ve Ny /T? < 1.

Thus this value is large for an ideal plasma.

We have shown that the Debye—Hiickel radius is the fundamental param-
eter of an ideal quasineutral plasma. It is the distance over which a collection
of charged particles of the plasma shields external electric fields or fields of
individual plasma particles.

3.4 DEFINITION OF A PLASMA

Consider a gas-filled gap subjected to an external electric field. If the gas
does not contain charged particles, the field is uniform in the gap. In the
presence of charged particles in the gas, an external electric field is shielded
near edges of the gap (see Fig. 3.1) over distances of the order of the
Debye—Hiickel radius. Thus the character of the distribution of the electric
field inside the gas is different in these two cases. Note that here we assume
the plasma to be quasineutral up to its boundaries, an assumption that can be
violated in real cases. Based on the above considerations, one can define a
plasma as a weakly ionized gas whose Debye—Hiickel radius is small com-
pared with its size L, that is,

L > rp. 3.8
D

Figure 3.1 The electric potential distribu-

tion in a gap containing an ionized gas; for

a Debye-Hiickel radius large (curve 1) or
~, small (curve 2) compared to the gap size.

N
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TABLE 3.1. Parameters of Some Plasmas

Type of Plasma N,,em™3 T..K rp, cm L,cm
E-layer of ionosphere 10° 300 0.3 10°
He-Ne laser 10" 3 x 104 3x 1073 1
Mercury lamp 10' 5 x 104 3x 1073 0.1
Sun's chromosphere 5 x 108~ 3 x 10*- 0.01-0.1 10°

5% 10° 3% 10°
Lightning 10" 3 x 104 3x107° 100

As an example, we can calculate the minimum density of charged particles
in a plasma for a gap size of the order of 10 cm and for an electron
temperature of 7, ~ 1 eV. We have an electron density N, > 10* cm™* for
this case. This is a very small value (see Figs. 1.1 and 1.2). For example, the
electron number density of a glow discharge lies in the range 107-10'2 ¢cm ™3,
Table 3.1 contains parameters of some plasma types in terms of a typical
number density N, and temperature 7, of electrons, and also the
Debye—Hiickel radius r, of the plasma and its size L. These examples are a
representative sampling of real plasmas,

3.5 OSCILLATIONS OF PLASMA ELECTRONS

The Debye-Hiickel radius is the parameter that characterizes an ideal
quasineutral plasma. We can estimate a typical time for the response of a
plasma to an external field. For this purpose we study the behavior of a
uniform infinite plasma if all the plasma electrons are shifted at the initial
time by a distance x; to the right, starting from a plane x = 0. This creates
an electric field whose strength corresponds to the Poisson equation (3.2):

dE /dx = 4me(N, — N,).

Assuming the electric field strength at x < 0 to be zero, the Poisson equation
gives an electric field strength for x > x, of E = 4mweN,x,, where N, is the
average number density of charged particles in the plasma. The movement of
all the electrons under the influence of the electric field leads to a change in
the position of the boundary. The equation of motion for each of the
electrons can be written as

d*(x + x,)
IHET— = —¢E,

where m, is the electron mass, and x is the distance of an electron from the
boundary. Because x is a random value, not dependent on the phenomenon
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being considered, one can assume this value to be independent of time. Thus
the equation of motion of an electron gives

d’x,/dt? = — ngo,

where the quantity

w, = (4wNye/m,)"” (3.9)
is called the Langmuir, or plasma, frequency.

The solution of the equation obtained predicts an oscillatory character for
the electron motion. Accordingly, 1/w, is a typical time for a plasma
response to an external signal. Note that rpw, = y/2T/m, is the thermal
electron velocity. From this it follows that a typical plasma response time for
an external signal is a time during which the electrons experience a displace-
ment of the order of the Debye—Hiickel radius. Thus we have two fundamen-
tal parameters of an ideal quasineutral plasma: the Debye—Hiickel radius rp,
which is a shielding distance for fields in a plasma; and the plasma frequency
w,, so that the value w;‘ is a typical time for the plasma to respond to
external signals.

3.6 INTERACTIONS IN IDEAL PLASMAS

We now calculate the average interaction energy in an ideal plasma and the
distribution function for the interaction energies of charged particles. Based
on the interaction potential (3.7) for two charged particles, we have for its
average value

— = ep ep
U= '[0 eqa[NO exp(—7) - N, exp(7)]dr.

Equation (3.7) gives the electric potential ¢ from an individual plasma
particle as

¢ = (e/r)exp(—r/rp).

The above result for the mean interaction potential in an ideal plasma
accounts for pairwise interactions of all the charged particles in a volume
that have a Boltzmann distribution. In the case of an ideal plasma the
principal contribution to the integral occurs at small interactions e¢ < T, so
that

— 2N, = 5 4w Nye'ry e’
= —— dgridr= —-——— = ———, 1
v T j(; (e@)dmrdr T 2rpT (3.10)
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where we have used the expression (3.5) for the Debye—Hiickel radius. Thus
the average energy of a charged particle in an equilibrium plasma is

3T € (3.11)
E=— - . .
2 2rp

To estimate fluctuations AU of the interaction potential for a charged
particle in a plasma, we assume this value to be determined by positions of
other charged particles in a sphere of the Debye—Hiickel radius centered on
the test particle. The mean number of charged particles in this region is
n ~ Nyrd > 1, with fluctuations of the order of v . Hence the fluctuation of
the interaction potential of the test charged particle in a plasma is

AU ~ Vne*/rp, ~ eN}/2ri?. (3.12)

Since AU > U, the distribution function for the interaction potentials yields
U = 0 and, according to Eq. (2.41), has the form

” =172 U?
FUY = 2 AU?) P exp (— 2AU2), (3.13)

where f(U)dU is the probability that the interaction potential lies in the
interval from U to U + dU. The squared deviation of the distribution (3.13)
is

AU? =T =2 (eg)’Nodwridr = 4wNoe*r, = UT > U2, (3.14)
0

where the factor 2 takes into account the presence of charged particles of the
opposite sign, and N, is the mean number density of charged particles of one
sign. We see that an ideal plasma has

U< AU < T.

3.7 BEAM PLASMA

We return now to the example shown in Fig. 3.1, which we used for
explaining the character of the distribution of an external electric field in an
ideal quasineutral plasma. In this example, a plasma is assumed to have
overall quasineutrality. In reality, plasma boundaries (called plasma sheaths)
contain a nonneutral plasma. Plasma properties in this region depend on
processes that occur there. If charged particles are generated by a metallic
surface or charged particles recombine on walls, an intermediate layer of
nonneutral plasma arises between the plasma and the surface. It is called a
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double layer. A nonneutral plasma occurs also if charged particles are
collected in certain regions, or traps, or if they are transported through space
due to the action of external fields in the form of beams. The primary
peculiarity of nonneutral plasma arises from the strong fields created by the
particle charge, and that restrict the plasma density. As an illustration, we
shall consider a classic example of nonneutral plasma formed near a hot
cathode.

One can generate an electron beam in a simple way by heating a metallic
surface in a vacuum, so that the surface emits an electron flux as a result of
thermoemission (see Chapter 2). Using electric fields allows us to accelerate
electrons and remove them from the surface in the form of a beam. But the
parameters of this beam can be limited by internal electric fields that arise
due to electron charges. We can find the properties of such a beam, created
between two flat plates a distance L apart, with an electric potential U
between them.

The electron current density j is constant in the gap, because electrons
neither are produced nor recombine in the gap. This gives

j =eN,(x)v,(x) = const,

where x is the distance from the cathode, N, is the electron number density,
v, = y2eU(x)/m, is the electron velocity, and the electric potential is zero
at the cathode surface, that is, U(0) = 0. An electron charge creates an
electric field that slows the electrons. We can analyze this connection. The
electric field strength E = —dU /dx satisfies the Poisson equation

aE 4meN 47 e 3.15
E——wee(x)——vrj el (3.15)

Multiplication of this equation by E = —dU/dx provides an integrating
factor that makes a simple integration possible. We obtain

m U
E? =E} + 16mj el (3.16)
e

where E, = E(0).

We need to establish the boundary condition on the cathode. We consider
the regime where the current density of the beam is small compared to the
electron current density of thermoemission. This means that most of the
emitted electrons return to the metallic surface, and the external electric
field does not significantly alter the equilibrium between the emitted elec-
trons and the surface. Then the boundary condition on the cathode is the
same as in the absence of the external electric field, so that E(0) = 0.
Equation (3.16) leads to the distribution of the electric potential in the gap,
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given by

2/3
ml’
U= (97Tj > ) x43,

This can be inverted to obtain the connection between the electron current
density and the parameters of the gap:

2 e Uy/?

T on) 2m, 12

J (3.17)
This dependence is known as the three-halves power law. It shows how the

behavior of an electron plasma in a space between plates is determined by an
electric charge of this beam plasma.



CHAPTER 4

ELEMENTARY PLASMA PROCESSES

4.1 PARTICLE COLLISIONS IN PLASMAS

We begin by seeking to identify a parameter to characterize the elementary
act of collision of two particles in a gas or plasma. Consider the collision of
a test particle designated A with some other particle in the gas that is
labeled B. The collision of these two particles can lead to a change in the
internal state of particle A. The initial state of particle A will be designated
by the subscript i, and the final state by f. We assume that each collision can
result in transitions only between these states. Then the probability P(¢) that
particle A remains in the initial state up to time ¢ is given by

dpP
T — v, P, (4.1)
where v, is the probability per unit time of a collisional transition.

A coordinate frame is employed in which the test particle A is motionless.
The transition probability per unit time, v,,, is proportional to the incident
flux j of particles B. Hence, the ratio of these values, v;;/j—the cross section
for the process—is characteristic of the elementary act of particle collisions
and does not depend on the number density of the particles B. If all
the particles B move with the identical velocity vy, their flux is given by
lv, — vgl[B], where [B] is the number density of particles B, and v, is the
velocity of a particle A. Thus the transition frequency »;, is connected with
the transition cross section o;, by the expression

Vir = [Bllva - VB|0'ifv (4.2)

45
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where the cross section o;; can depend on the relative velocity of the
particles.

If particles A and B have definite velocity distributions, the transition
probability per unit time has the form

vy = [BKIVa = vyloy,) = [BCk,p), (4.3)

where the angle brackets signify an average over relative velocities of the
particles, and the quantity

kif = (v - VB|0'if>

is called the rate constant of the process. This parameter also characterizes
the elementary act of collision. The rate constant of the process is useful
when we are interested in the frequency of transition averaged over the
velocities of the particles.

We can write balance equations for the number density of particles A
found in a given state / by taking into account transitions of the A-particle to
other states. These equations have the form

dN,
— = [B]§kﬁNf - [B]N,@k,,, (44)

where k;, is the rate constant for transitions between states i and f of the
particle A resulting from collision with the particle B. The balance equations
(4.4) can be extended to include other processes.

4.2 ELASTIC COLLISIONS

When two particles collide elastically, the internal states of the colliding
particles remain unchanged. The particle motion is described by Newton’s
equations

d’R, oU d’R, oU

M—») - I M —_—s T T .
Udr? dR, 2 dr? R,

Here R, and R, are the position vectors of the particles, M, and M, are
their masses; and U is the interaction potential of the force between the
particles, assumed to depend only on the relative position vector between
them. That is, the potential has the form U = U(R| — R,). Then —dU/JR;
is the force acting on the particle j due to the other particle, and sU/dR, =
-dU/dR,.
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We now introduce as new vector variables the location of the center of
mass, R, = (MR, + M,R,)/(M, + M,), and the relative position vector,
R = R, — R, . Newton’s equations in terms of these variables are

Mo M d’R, 0 d*R aU
+ _ = = - ———
(M, 2) dr? o Pae IR’

where u = MM, /(M, + M,) is the reduced mass of the particles. It can be
seen that the center of mass travels with a constant velocity, and the
scattering is determined by the character of the relative motion of the
particles in the center-of-mass frame. Though the above analysis was made
within the framework of classical mechanics, the situation in quantum me-
chanics is the same. That is, in quantum mechanics, free motion of the center
of mass obtains in the absence of external fields, and collision is character-
ized by the relative coordinates. Thus, the problem of collisions of two
particles reduces to the problem of the motion of one particle with a reduced
mass in coordinates fixed to the center-of-mass frame of axes.

Figure 4.1 shows the trajectory of particles in the center-of-mass system
when the central interaction potential depends only on the scalar distance
between the particles, IR, — R,|. The parameters of the collision are given in
Fig. 4.1. We can determine the connection between the impact parameter p
and the distance of closest approach r,. Using conservation of momentum,
the momentum wpv at large distances between the particles is the same as
the momentum uu,r, at the distance of closest approach. Here v = v, — v,|
is the relative velocity of the particles, and v, is the tangential component of
the velocity at the distance of closest approach, where the normal component
of the velocity is zero. Energy conservation gives the relation uv?/2 = uv®/2
— U(ry). This leads to the expression

2 U(r
A0 (4.5)
ry &

Figure 4.1 The trajectory of a particle in a central field in the center-of-mass frame
of reference. R is the radius vector of the particle with the reduced mass u, p is the
impact parameter, 6 is the scattering angle in the center-of-mass frame of reference,
and r, is the distance of closest approach; that is, it is the minimum distance between
particles for a given impact parameter.
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where &= uv’/2 is the kinetic energy in the center-of-mass frame of
reference.

The two-particle scattering process, when treated in the center-of-mass
frame, can be considered as the motion of a single particle of the reduced
mass u in the field U(R). The differential scattering cross section is the
number of scattering events per unit time and unit solid angle divided by the
flux of incident particles. In the case of a central force field the elementary
solid angle is d® = 2ard(cos 9), and particles are scattered into this element
of solid angle from the range of impact parameters between p and p + dp.
The particle flux is Nv, where N is the number density of particles B and v is
the relative velocity of collision; and the number of particles scattered per
unit time into a given solid angle is 27rp dp Nv, so the differential cross
section is

do=2mpdp. (4.6)

Elastic scattering determines many gas and plasma parameters. For bulk
parameters of an ionized gas, an averaged cross section is usually the
quantity of most importance if these parameters are determined by large-an-
gle scattering. We can estimate a typical scattering cross section for large
angles. Then the interaction potential at the distance of closest approach is
comparable to the kinetic energy of the colliding particles, and this cross
section is given by the relation

o= mp}, where U( p,) ~ &. (4.7)

The averaged elastic scattering cross section most often used is the
so-called diffusion, or transport, cross section, defined as

o* = (1 -cos9)do, (4.8)

where ¥ is the scattering angle. Small scattering angles are not significant for
the diffusion cross section, since they appear in the integrand with a weight
factor 92/2. All the bulk parameters that are determined by electron—atom
scattering are expressed through the diffusion cross section. Some transport
parameters of a gas, such as the thermal conductivity and viscosity coeffi-
cients, are expressed through another averaged cross section, o' =
f(l — cos®¥)da , which is the other form of a scattering cross section at
large angles. Often the name gas-kinetic cross section is used for the
scattering cross section at large angles. At room temperatures it is of the
order of 1075 ¢cm? (see Appendix 4). Since v ~ Nvo is the frequency of
collision, its reciprocal 7 ~ 1 /v is the time between successive collisions, and
A =vr ~ 1/(No) is the mean free path, that is, the distance traveled by an
atom between two successive collisions.
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U(R)

~2

1
R .
— / il Figure 4.2 The interaction potential of

0
Ry two atoms (curve 2) and the model
~2 potential (curve 1) corresponding to the

-b hard-sphere model.

Note that the case of the Coulomb interaction of particles is an exception
to the conclusion that the main contribution to the diffusion scattering cross
section of (4.8) is at large scattering angles, because in this case the cross
section has a logarithmic divergence at small angles. If the collision proceeds
in a plasma, minimum scattering angles are determined both by
Debye—Hiickel shielding of charges and by many-body scattering.

4.3 HARD-SPHERE MODEL

The interaction potential of two atoms as a function of the relative distance
between them is given in Fig. 4.2. In order to understand the character of the
scattering of atoms at large collision energies as a function of the depth D of
the interaction well, a simple model for the interaction potential given in
Fig. 4.2 is useful. This potential has the form

0, r>R,

U(R) = {w, F<R. (4.9)

where R, is the interaction radius of the atoms. This scattering model is
called the hard-sphere model, and is used widely in the kinetics of neutral
gases.

To determine the scattering cross section within the framework of the
hard-sphere model, we can consult Fig. 4.3, which shows the dependence of
the distance of closest approach on the impact parameter of the collision. In
this case the scattering is like scattering from a hard spherical surface. From
Fig. 4.4, the scattering angle is ¥ = m — 2, where sin @ = p/R,,, so that
p = Rycos(8/2). Equation (4.6) gives the differential cross section

do =2mpdp = (wR;/2) d(cos 3), (4.10)
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Y

Ry

Figure 4.3 The dependence of the impact parameter on the distance of closest
approach for the hard-sphere model.

p A9

N

Figure 4.4 Scattering for the hard-sphere model: R, is the sphere radius, 9 is the
scattering angle, and the thick line is the particle trajectory.

which leads to the diffusion scattering cross section
o* = wR;. (4.11)

Equation (4.11) is in agreement with the estimate given in Eq. (4.7) for the
scattering cross section.

4.4 CAPTURE CROSS SECTION

We now turn our attention to the other limiting case of atomic scattering:
when the collision energy is small compared to the well depth D. The
dependence on the distance of closest approach, calculated on the basis of
Eq. (4.5), is given in Fig. 4.5. This curve is divided into two regions, whose
boundary is marked with an arrow. Region 2 is not related to collisions of
particles, and hence will not be considered. Effectively, the region of impact
parameters is divided into two parts, and their boundary corresponds to the
impact parameter p.. At p > p., values of the impact parameter and the
corresponding distance of closest approach are comparable. If the impact
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Figure 4.5 The dependence of the impact parameter on the distance of closest
approach for an attractive interaction potential according to Eq. (4.5).

parameter is smaller than p_, the distance of closest approach r, is close
to rn,, defined by U(r.,,) = 0. Then collision capture occurs, and the
bound system reduces its size until finally a short-range repulsion halts the
contraction.

Since the capture is governed by the long-range part of the interaction
potential, we can approximate the interaction potential by the dependence
U(R) = —C/R". The impact parameter for capture, p,_, is determined as the
minimum of the dependence p(r,), and, according to Eq. (4.5), the capture
cross section is

= 2
o, = TP, =

mn [ C(n—2)\" 12
n—2 2¢ ' (4.12)
The dependence of the cross section on parameters is like Eq. (4.7). In
particular, in the case of polarization interaction of an ion and atom,
U(R) = —Be?/(2R*) (B is the atomic polarizability), the polarization cap-
ture cross section of an atom by an ion is

g, = 277'(—2 (4.13)
7

The final result shows that particle capture is determined by a long-range
part of the interaction potential. Specifically, Eq. (4.5) gives, for r, = r,,
—U(r))/e =2/(n — 2), and because & < D, we have |U(r,)| < D. That is,
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the capture is determined by the long-range part of the interaction. Since
usually we have n > 1, in the region r; > r, the interaction potential is small
compared to the kinetic energy of the particles. This means that the main
contribution to the capture cross section is for impact parameters p < p, that
correspond to particle capture.

Capture of particles is associated with a strong interaction. In fact, since

1/n
rc~rmin(D/8) >>rmin’

then small distances between particles are reached in the capture process. At
these distances an attractive interaction potential greatly exceeds the kinetic
energy of the particles. A strong interaction of particles in this region is also
associated with a strong scattering of particles. Therefore, one can assume
that the capture of particles leads to their isotropic scattering, and the
diffusion scattering cross section of Eq. (4.7) almost coincides with the
capture cross section of (4.12). For instance, in the case of polarization
interaction of particles, the diffusion cross section of particle scattering
exceeds the capture cross section by about 10%.

4.5 TOTAL SCATTERING CROSS SECTION

The total cross section for elastic scattering is found by integrating the
differential cross section over all solid angles: o, = (do. In classical terms
the total cross section must be infinite. Classical particles interact and are
scattered at any distance between them, and scattering takes place at any
impact parameter. Therefore, the classical total cross section will tend to
infinity if Planck’s constant # — 0.

We can evaluate the total collision cross section by assuming that the
colliding particles are moving along classical trajectories. The variation of the
particle’s momentum is given by the expression

Ap = fjc Fdr, (4.14)

where F = —9U/JR is the force with which one particle acts upon the
other, and U is the interaction potential between the particles. From Eq.
(4.14) it follows that Ap ~ U(p)/v, where p is the impact parameter.
According to the Heisenberg uncertainty principle, the value of Ap can be
determined up to an accuracy #/p. Therefore, the principal contribution to
the total scattering cross section is given by values of the impact parameter
that satisfy the relation Ap(p) ~ % /p. This leads to the estimate

U
o, ~pl,  where p‘—ﬁ(ui) ~1, (4.15)
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for the total scattering cross section. In particular, if U(R) = C/R", the total
cross section is

C 2/(n-1)
7, ~ (%) . (4.16)

Since the scattering cross section is determined by quantum effects, it
approaches infinity in the classical limit. This is demonstrated by Eq. (4.16),
which indeed approaches infinity in the limit # — 0.

Particle motion will obey classical laws if the kinetic energy ¢ satisfies the
condition

e> h/T, (4.17)

where 7 is a typical collision time. Since 7 ~ p/v and & = uv?/2, it follows
that | = upv/fh > 1, where [ is the collisional angular momentum of the
particles. If this criterion is fulfilled, the motion of the particles can be
expected to follow classical trajectories. Furthermore, in this case the total
cross section (4.15) is greatly in excess of the cross section o for large-angle
scattering given by Eq. (4.7). In particular, for a monotonic interaction
potential U(R) Eqgs. (4.7) and (4.15) give U(py)/U(p) ~ ppu/h > 1. It
follows from the monotonicity of U(R) that p, > p,, so that

g, > 0. (4.18)

Note that if the condition (4.17) is not satisfied and the scattering has a
quantum nature, then the large-angle scattering cross section and the total
scattering cross section have the same order of magnitude. In particular, this
is the situation for elastic scattering of electrons by atoms and molecules.

4.6 GASEOUS-STATE CRITERION

The condition that defines the gaseous state of a system of particles can be
formulated in terms of the collision cross section. A gas is a system of
particles with weak interactions among them. This means that each particle
follows a straight trajectory most of the time. Only occasionally does a
particle interact strongly enough with another particle to lead to large-angle
scattering. This situation can be expressed by stating that the mean free path
of a particle, A = 1/(No), is large compared to the interaction radius Vo .
Thus, the condition to be satisfied for a system to be in a gaseous state is

No¥? < 1. (4.19)



54 ELEMENTARY PLASMA PROCESSES

We can analyze this problem from another standpoint. We can express the
gaseous-state condition as

U(N ') < uv?.

This criterion signifies a weakly interacting system, since the interaction
potential of a test particle with its neighbors is small compared to its mean
kinetic energy. The notation U(N~'/?) signifies that the potential is evalu-
ated at the mean distance between particles, N™!'/2. On the basis of this
expression and Eq. (4.7), we have U(N~'/*) <« U(p,) . For a monotonic
interaction potential this is equivalent to N~'/* > p,, and that inequality
returns us to the condition stated in Eq. (4.19).

The next step is to apply this criterion to a system of charged particles,
that is, to a plasma. Because of the Coulomb interaction |U(R)| = e?/R
between charged particles, Eq. (4.7) gives

o~et/T? (4.20)

for a typical large-angle scattering cross section, where 7 is the average
energy of the particles. Specifically, T is their temperature expressed in
energy units. The condition (4.19) for a collection of particles to be a true gas
is transformed in the case of a plasma to

Ne® /T3 < 1,

where N is the number density of charged particles, and T is their tempera-
ture. This is the same as Eq. (3.1), the condition for a plasma to be ideal.

4.7 SLOW INELASTIC COLLISIONS

Collisions of atomic particles—ions, atoms, and molecules—are called slow
collisions if the velocity of their relative motion is small compared to a typical
internal atomic velocity v,. (For the hydrogen atom, v, = e/#.) In this case
the electron distribution in each of the colliding atomic particles responds
primarily to the internal fields of the particles, and differs little from their
distributions when the particles are at rest. Then one can analyze particle
collisions within a framework of electron terms found by supposing that the
nuclei of the particles are at rest. The electrons respond only as a function of
the distances between them, as if the electrons were bound to fixed nuclei.

Transition between two electron terms is characterized by the ratio of the
difference of their energies, Ag, to the quantum indefiniteness in energy,
fw/a, where v is the collision velocity, and g is a typical distance between
nuclei associated with a significant change of the corresponding terms. The
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above criterion is expressed in terms of the Massey parameter

Aeoa 4.21
§=— - (4.21)

If the Massey parameter is large, the probability of the corresponding
transition is adiabatically small, that is, it behaves as exp(—c¢), where ¢ ~ 1
is a numerical coefficient. Therefore, transitions between electronic states in
slow atomic collisions can be a result of intersections or pseudointersections
of corresponding electron terms.

Consider as an example the charge exchange process

A*+ B > A* + B. (4.22)

In this case the Coulomb interaction takes place in the initial channel of the
process, with only a weak interaction of neutral particles in the final channel.
The intersection of electron terms takes place at the distance between nuclei
given by

Ro=— (4.23)

where EA is the electron binding energy in the negative ion B (the electron
affinity of an atom B), and J is the ionization potential of the atom A. The
transition transferring the electron from the field of one atomic particle to
the other takes place near the intersection distance R..

Resonant collision processes are characterized by Ag = 0 at infinite dis-
tances between colliding particles, and a small Massey parameter corre-
sponds to these processes at finite distances between particles. Hence,
resonant processes proceed effectively. One can consider a resonant process
as an interference of the states between which the transition proceeds. Then
the transition probability is ~ 1 if the phase shift [As(R)dt/h ~ 1. Thus
the cross section of a resonant process is of the order of R2, where R, is the
collision impact parameter for which the phase shift is of the order of unity,
that is,

o~ wR3,  where fAs(R) dt/h ~ 1. (4.24)

Let us consider as an example the excitation transfer process
A*+ A A+ A%

This process can cause broadening of spectral lines. The interaction potential
of the atoms in the ground and excited states is U ~ D?/R?, where D is the
matrix element of the dipole moment operator between these states, and R is
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the distance between the atoms. From Eq. (4.24), the cross section of this
process [0 ~ R3, where (D?/R3)R,/v) ~ ti] is

CD?
o= , (4.25)
ho

where C ~ 1. Because D ~ ea,, where a, = °/(me?) is the Bohr radius,
and v < e?/#, it follows that o > g3. That is, the cross section is much
larger than a typical atomic cross section.

4.8 AUTOIONIZING AND AUTODETACHING STATES
IN COLLISION PROCESSES

Autoionizing and autodetaching states are of importance as intermediate
states in collision processes. An autoionizing state is a bound state of an atom
or positive ion whose energy is above the boundary of the continuous
spectrum. Hence an electron can be released in the decay of such a state. For
example, the autoionizing state He(2s?,'S) is the state of the helium atom
where both electrons are located in the excited 2s state. This autoionizing
state can decay. As a result of such a decay one electron makes a transition
to the ground state, and the other electron ionizes. The scheme of this
process is

He(2s2,'S) > He*(1s5,%8) + e + 57.9¢eV. (4.26)

An autodetaching state is identical to an autoionizing state, but occurs in a
negative ion. The decay of such a state proceeds with the formation of a free
electron and an atom or molecule. An example of an autodetaching transi-
tion is

H™(25%,'S) » H(1s,’S) + e + 9.56¢eV. (4.27)

Formation of autoionizing and autodetaching states determines the char-
acter of some collision processes involving electrons. These states give
resonances in cross sections as a function of the electron energy in both
elastic and inelastic scattering of electrons by atoms and molecules. They can
be present as intermediate states in such processes. For instance, the cross
section for vibrational excitation of molecules by electron impact increases by
two to three orders of magnitude if this process proceeds through excitation
of autodetaching states instead of by direct excitation. There are some
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processes that can proceed only through excitation of autoionizing or autode-
taching states, such as dissociative attachment of electrons to molecules and
dissociative recombination of electrons with positive molecular ions. Then
the cross section of the process as a function of the electron energy exhibits
resonances corresponding to autoionizing or autodetaching states. As a
demonstration of this, Fig. 4.6 gives a schematic display of terms that can
determine the process of dissociative attachment of an electron to a molecule.
Figure 4.7 shows the energy dependence of the cross section for dissociative
attachment of an electron to a CO, molecule.

U(R)

RE RC
Figure 4.6 Electron terms of a molecule (solid line) and negative ions (dashed line)

that determine the dissociative attachment process; ¢, is the energy of the captured
electron when the distance between nuclei is R,.

Cross section, 1019 em?
N
I

0 | L ] . ] 1
4 6 8 10

Electron energy, eV

Figure 4.7 The cross section for dissociative attachment of an electron to a carbon
dioxide molecule (¢ + CO, - O™+ CO) as a function of the electron energy. The
maxima of the cross section at the electron energies 4.4 and 8.2 ¢V correspond to
positions of the autodetachment levels of the negative ion CO;.
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Some collision processes of slow atomic particles are determined by
transitions of the quasimolecule consisting of colliding atomic particles in
autoionizing or autodetaching states. In this case an electron term intersects
the boundary of continuous spectra at some distance between the colliding
particles. In the region of smaller distances this term is the autoionizing or
autodetaching term, and the system of colliding particles can decay with the
release of an electron. The process is

A"+ B - (AB™)** > AB + ¢, (4.28)

where two asterisks denote an autodetaching state. Electronic terms for this
process are given in Fig. 4.8. In this case the term of an autodetaching state
of a negative ion has a form other than in Fig. 4.6, and the final state of the
process relates to the electron release. At distances between nuclei R < R,
the relevant state of AB™ is an autodetaching state, and the decay of this
state leads to the above channel of the process. The other process of this
group is the associative ionization

A* + B - (AB)** > AB" + e. (4.29)

The character of the process and the behavior of the corresponding terms
(see Fig. 4.9) are similar to the previous case.

Figure 4.8 Potential energy diagrams illustrating molecular electron terms that cause
the electron-impact excitation of vibrational levels through an autodetachment state.
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UR) A

Figure 4.9 Potential energy diagrams illustrating molecular electron terms that cause
dissociative recombination and associative ionization.

4.9 TYPES OF ELEMENTARY PROCESSES

A summary of the elementary processes occurring in weakly ionized gases is
given in Tables 4.1-4.3. The following comments contain details and special
features of these processes:

»

. Typically, the cross section is of the order of the gas-kinetic cross

section.

See Chapter 8.

See Chapter 5.

J and J' are angular momenta of the molecule. The cross section is,
typically, less by one or two orders of magnitude than the cross section
for elastic collision of a slow electron and the molecule. A selection
rule determines the difference J —J' depending on the molecular
species and on the collision energy.

. Processes proceed via formation of an autodetaching state AB~. The

probability of the process depends on the relative position of the
electron energy and the autodetaching state energy. The cross section
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TABLE 4.1. Collision Processes of Electrons with Atoms and Molecules

Comment
Process Scheme Number

Elastic collision of electrons

with atoms and molecules e+A—-oe+ A 1
Inelastic collision of electrons

with atoms and molecules e+ Aeoe+ A 2
Ionization of atoms or molecules

by electron impact e+A—-2e+ A" 3
Transitions between rotational

levels of molecules e + AB(J) - e + AB(J") 4
Transitions between vibrational

levels of molecules e + AB(v) - e + AB() 5
Dissociative attachment of an

electron to a molecule e+ AB—-> A+ B~ 5
Dissociative recombination e+ AB*—> A + B* 3,5
Dissociation of a molecule

by electron impact e+AB—-e+A+B 6
Electron attachment to an atom

in three-body collisions e+A+B—-> A+ B~ 3
Electron-ion recombination 2e + AT> e + A,

in three-body collisions e+A"™+ B> A*+ B 3

>

10.

11.

for the process has a resonant energy dependence, and the maximum
cross section is less than or of the order of the atomic cross section.

. The process proceeds via excitation of a molecule into a repulsive

electron term. The dependence of the cross section on the electron
energy is the same as for excitation of vibrational levels of the
molecule by electron impact.

For thermal energies of collision, the cross section has the gas-kinetic
magnitude (~ 107" cm?).

See Chapter 4.

Under adiabatic conditions, these processes have a small transition
probability for collision energies of a few electron volts, and the
relative cross sections are smaller than typical atomic cross sections by
several orders of magnitude.

For thermal collision energies, the cross section for the transition is
smaller than the gas-kinetic cross section by several orders of magni-
tude.

For thermal collision energies, the cross section for the transition is of
the order of a typical atomic cross section.
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TABLE 4.2. Collision Processes of Atoms and Molecules

Comment
Process Scheme Number
Elastic collision of atoms and
molecules A+B->A+B 7,8
Excitation of electron levels
in collisions with atoms A+B->A*+ B 8,9
Ionization in collisions of atoms A+B-o>A*+e¢e+ B
Transitions between vibrational
levels of molecules A + BC(v) - A + BC(v") 10
Transitions between rotational
levels of molecules A+ BC(J) - A + BC(J) 11
Quenching of excited electronic
states in atomic collisions A* + B(BC) - A + B(BO) 8,9,20
Associative ionization A*+ B> AB*+ e 2
Penning process A*+B—->A+B'+e 2
Transfer of excitation A*+ B —> A + B* 8
Spin exchange and transitions
between hyperfine structure states A+ B(l)> A+ B(1) 8,12
Transitions between
fine-structure states A + B(j) - A + B(j") 8,13
Atom depolarization in collisions A+ B(l)—> A+ B(1) 8,14
Formation of molecules
in three-body collisions A+B+C—->AB+ C 3,15,20
Chemical reactions A+ BC - AB +C 16,20
TABLE 4.3. Collision Processes Involving lons
Comment
Process Scheme Number
Resonant charge exchange AT+ A-> A+ AT 3,17
Nonresonant charge exchange A"™+B—-> A+ B 18
Mutual neutralization of ions A"+B > A+B 3
Decay of negative ions A+B > AB +e
in atomic collisions A+B >A+B+e 8
lon-molecular reactions A*+ BC - AB*+ C(AB + C*) 19,20
Conversion of atomic ions
to molecular ions in AT+ B+ C—-> AB'+ C 3,21
three-body collisions
Ion-ion recombination
in three-body collisions A*+B +C->A+B+C 3,22
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12.

13.

14,
15.
16.
17.
18.
19.

20.
21.

22.

ELEMENTARY PLASMA PROCESSES

Arrows indicate spin orientation of valence electrons. This is a reso-
nant process. Consider, as an example, collision of two alkali-metal
atoms in the ground electron state. Then spin exchange corresponds
to exchange of valence electrons, so that the spin transition causes the
transition between hyperfine structure levels of each atom.

If the energy difference for fine-structure levels is sufficiently small
and the Massey parameter (4.21) is small for the transition, this
process is resonant and is characterized by large cross sections.
Arrows mean directions of atomic angular momenta. This is a reso-
nant process.

For thermal energies, the rate constant of the process is of the order
of 107%-107% cm®/s.

Participation of various electron terms in the process and transitions
between them can make important changes in the process.

The cross section of the process is larger than the gas-kinetic process
(see Appendices 6, 9).

The cross section depends on the value of the Massey parameter.
These reactions are akin to chemical reactions.

See Chapter 19.

For thermal collision energies, the rate constant of this process is of
the order of 10°% cm®/s. Formation of an autodetaching state
(AB*)** in the course of the collision can exceed this value by several
orders of magnitude.

See Chapter 11.



CHAPTER 5

PROCESSES INVOLVING
CHARGED PARTICLES

5.1 ATOMIC IONIZATION BY ELECTRON IMPACT

Processes in which ions and free electrons are either introduced into a
plasma or removed from it are fundamental to the establishment of plasma
properties. Below we analyze basic processes of this type. We consider first
the ionization of an atom by electron impact:

e+A->2e+ A"

In this process the incident electron interacts with a valence electron,
transfers to it a part of its kinetic energy, and causes the detachment of the
valence electron from the initially neutral atom. We can analyze this process
in terms of a simple model developed by J. J. Thomson, in which it is
assumed that electron collisions can be described on the basis of classical
laws, and that the electrons do not interact with the atomic core in the course
of the collision. Despite the fact that the atom is a quantum system, this
model gives a correct qualitative description of the process because the cross
sections for elastic collisions governed by the Coulomb interaction are
identical in the classical and quantum cases. Within the framework of this
model, ionization occurs if the energy transferred to the valence electron
exceeds the ionization potential J of the atom. Hence, we have to find the
cross section for collisions in which the energy exchange between electrons
Ae exceeds the atom ionization potential. When Ag is small compared to
the kinetic energy of the incident electron, & = m_v?/2, the incident electron
can be taken to move along a straight trajectory, the valence electron may be
assumed to be at rest during the collision, and the change of the electron

63
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momentum is perpendicular to the path of the incident electron in the plane
of motion.

The variation of the electron momentum is given by Eq. (4.14). For
Coulomb interaction of electrons, the force between the electrons is F =
e’R/R?, where R is the distance between the electrons. From the symmetry
of the problem, the change in momentum is in a direction perpendicular to
the trajectory of the incident electron. The magnitude of the momentum
change is

= ep 2¢?
= Zar="=. 5.1
Ap=[ +d " (5.1)

For the free motion of the incident electron, we take R = p? + v?t?, where
p is the impact parameter of the collision, v is the velocity of the incident
electron, and ¢ is time. From this we find the energy lost by the incident
electron to be

Ap? 2et et
Ae=—m= = = —,
2m, p‘myuc  pe

where & is the energy of the incident electron. The cross section for collisions
accompanied by the exchange of energy Ae is

metdAe

do=2mwpdp=———.
pap 8(A8)2

(52)

Though this formula was deduced for the case £ > Aeg, it is valid for any
relative magnitudes of these parameters. When we use this expression to
determine the ionization cross section within the Thomson model, we take
into account that the ionization occurs with & > Ae > J. This gives the
ionization cross section

& 7T€4 1 1
O'ion=Asfd0'=—(———). (5.3)
J

e \J &

This expression for the ionization cross section is called the Thomson
formula. Although this result is for an atom with one valence electron, it can
be generalized for atoms with several valence electrons.

Since the process was treated classically, the ionization cross section
depends on classical parameters of the problem: m, (the electron mass), e’
(the interaction parameter), e (the electron energy), and J (the ionization
potential). The most general form of the cross section expressed through
these parameters is

Gon = 13 ), (54)
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where f(x) is, within the framework of the approach we employ, a universal
function identical for a valence electron in all atoms. In particular, for the
Thomson model this function is

f(x) =1/x—1/x".

The Thomson formula gives the correct qualitative behavior of the ioniza-
tion cross section. In the vicinity of the threshold, it gives o, ~ £ — J, and
the maximum of the cross section occurs at & = 2J with the value o, =
me* /(4J2). It is therefore of the order of magnitude of a typical atomic cross
section. For high collision energies the Thomson formula gives the correct
energy dependence—the ionization cross section decreases as the reciprocal
of the energy. A more correct accounting for the behavior of valence
electrons inside atoms does not change the qualitative character of the cross
section.

The Thomson formula can be used for estimates of ionization rates in a
plasma. Based on the Thomson formula and averaged over the Maxwell
distribution function for electron velocities, the rate constant of atomic
ionization by electron impact is

. ( Yk J . met [2J
ion = \UeTign? = 01+zexp(—z), z= Te’ 0 Jz ,

Here the angle brackets mean the average over the Maxwell distribution
function of electrons, v, is the electron velocity, m, is the electron mass, and

T, is the temperature. The rate constant has a maximum k&, = 0.3 k, at
z = 0.3, and at low electron temperatures it gives
. met [2T, J <
on = —— exp| — =1, <.
0on me me p Te e

5.2 COLLISION OF TWO CHARGED PARTICLES IN A PLASMA

Below we calculate the diffusion cross section of two charged particles in a
plasma. This cross section is a measure of the exchange of energy and
momentum between charged particles in a plasma and is widely useful in
expressing plasma properties. Small scattering angles ¢ give the principal
contribution to this cross section, which can thus be written as

oF = f(l —cos&)2mpdp = fﬂznpdp,

where p is the impact parameter for the collision. The scattering angle is
9 = Ap/p, where p = ug is the momentum of the colliding particles in the
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center-of-mass frame, meaning that u is the reduced mass of the particles, g
is the relative velocity of the particles, and, according to Eq. (5.1), the change
in momentum of the particles is Ap = 2¢2/( pg), where e is the particle
charge. Hence & = e?/(ep), where & = ug?/2 is the particle energy in the
center-of-mass frame. Substituting this into the expression for the diffusion
cross section of charged particle scattering gives

met . d
o* = fﬂzﬂpdp= — _p
e’/ p
This integral diverges in both the small- and large-impact-parameter
limits. It is possible to adjust these limits to finite values by examining the
nature of the divergences. The divergence at small impact parameters is due
to violation of the assumption of small scattering angles. This limit should
really correspond to & ~ 1, or p,., ~ e>/&. The divergence at large impact
parameters is caused by the infinite range of the unscreened Coulomb
interaction potential of charged particles in a vacuum, e’/r. It is more
correct to use the Debye—Hiickel interaction potential (3.7) of charged
particles in a plasma, e’exp(—r/rp)/r, where r is the distance between
particles, and rj is the Debye—Hiickel radius. Hence p,,, = rp, and the
diffusion cross section for the scattering of two charged particles is

et

o*=—InA, A=rpe’/e. (5.5)
£

The quantity In A is called the Coulomb logarithm. According to its defini-
tion, A > 1, and the value of A is known up to a factor of the order of one.
Thus, the accuracy of Eq. (5.5) improves with an increase in the Coulomb
logarithm.

5.3 MUTUAL RECOMBINATION OF POSITIVE
AND NEGATIVE IONS

Pairwise recombination of positive and negative ions is described by the
scheme

A"+ B - A* + B, (5.6)

The mutual recombination consists of the valence electron transferring from
the field of the atom B to the field of the ion A*. The process proceeds
effectively if the distance between nuclei permits a tunneling transition of the
electron. Based on this mechanism, we use a simple model for which
the transition probability is unity if the distance of closest approach of the
colliding particles, ry, is less than or equal to R,, and the transition
probability is zero at larger values of r,. Equation (4.7) then gives the cross



THREE-BODY COLLISION PROCESSES 67

section for the ion—ion pair recombination as

— 2 _ 2
Orec = TPy = 7TR0

62
1+ —|, 5.7

where p, is the impact parameter at which the closest approach of the
colliding particles is R,, and & is the kinetic energy of the ions in the
center-of-mass system.

In particular, for low collision energy ¢ < e2/R,, this relation gives

o, = TRye*/¢. (5.8)
Equation (5.8) gives the recombination rate constant « = vo,,, , so that
a=2me’R,/(2ew)"/?, where u is the reduced mass of the colliding ions.
Averaging this value over the Maxwell energy distribution for the ions yields

2 5
a = <U0’rec> =2 -/.—L? Roe 5 (59)

where the angle brackets denote averaging over the relative velocities of
the ions. We introduce in this model a parameter R, that describes the
tunneling transition of the valence electron. Though this parameter depends
on the structure of the negative ion and on the collision velocity, the range of
its values is not wide. One can estimate the value R, = 10 4, for thermal
collisions.

5.4 THREE-BODY COLLISION PROCESSES

Collisions represented by the scheme
A+B+C—->AB+C (5.10)

are referred to as three-body processes. In such collisions, particles A and B
combine to form a bound system, and the particle C carries away the energy
released thereby. The balance equation for the number densities of particles
in the interaction (5.10) has the form

d[AB]/dr = K[A][B][C], (5.11)

where [X] is the number density of particles X, and K is the rate constant of
the three-body process, with dimensionality cm®/s. Equation (5.11) can be
viewed as the definition of the three-body rate constant.

The Thomson theory can be used again to evaluate the three-body rate
constant. Though Thomson developed his theory for simple charged-particle
interactions, it can be extended readily to the treatment of three-body
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processes in general. The assumptions are made that the binding energy of
the end-product molecule AB is much larger than thermal energies, and the
motion of the particles is governed by classical laws. The formation of a
bound state of particles A and B occurs in the following way. As particles A
and B approach each other, their energy increases as the potential energy of
interaction is converted into kinetic energy. If a third particle C interacts
strongly with A or B when these particles are close to each other, then the
third particle may take from A or B an energy in excess of the initial kinetic
energy of these particles. The bound state of particles A and B is thus formed
as a result of a collision with the third particle.

This physical picture can be used as a basis for estimation of the rate
constant of a three-body process. Typical kinetic energies of the particles are
of the order of the thermal energy 7. Assume the mass of the third particle C
to be comparable to the mass of either particle A or B. Since the energy
exchange must exceed the initial kinetic energy of A and B, the interaction
potential between these particles during collision with C must also be of the
order of T. Thus, let us define a critical radius b by the relation

U(b) ~T, (5.12)

where U(R) is the interaction potential for the particles A and B.

Now we can estimate the rate constant of the three-body process. The
frequency of conversion of particle B into particle AB is of the order of
magnitude of the product of two factors. One measures the probability for B
to be located in the critical region near A, and is given by [Alb* . The other
factor is the frequency [Cluo of collisions with particle C. Here v is a typical
relative collision velocity, and o is the cross section for the collision between
C and either A or B, resulting in an energy exchange of the order of 7. If the
masses of the colliding particles are similar, this cross section is comparable
to the cross section for elastic collision. The estimate for the rate of forma-
tion of particle AB is thus

d[AB]/d1 ~ [A][B]p*[C]ve.

Comparison of this expression with the definition (5.11) of the constant of the
three-body process gives the estimate for the rate constant

K ~ vb%r. (5.13)

The transition expressed in (5.10) is a three-body process if the number
density for C is small, and therefore the probability of collision of A and B
with C is small when A and B are located the critical distance b apart. This
condition is valid if the critical radius is small compared to the mean free
path of particles A and B in a gas of particles C, or

[Cleb < 1. (5.14)
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5.5 THREE-BODY RECOMBINATION OF ELECTRONS
AND IONS

Three-body recombination of electrons and ions proceeds according to the
scheme

2e + At > e + A%, (5.15)

and is of importance for a dense plasma. According to the Thomson theory,
the three-body process produces initially an excited atom whose ionization
potential is of the order of the thermal energy T (T < J, where J is the
atomic ionization potential), and this atom later makes a transition to the
ground state as a result of subsequent collisions. The Thomson theory
is applicable to this process because classical laws are valid for a highly
excited atom.

An estimate for the rate constant of the process (5.15) can be made on the
basis of Eq. (5.13). Because the cross section of elastic scattering of electrons
is o ~e*/T? according to Eq. (4.14), and the critical radius is b ~ e*/T
according to Eq. (5.12), then the rate constant of the process (5.15) is

o elll

In this expression, « is the recombination coefficient, defined as the rate
constant for the decay of charged particles in the pair process, and C ~ 1isa
numerical coefficient. The validity criterion for Eq. (5.16) requires fulfillment
of condition (5.14), which in this case has the form N,e®/T*® < 1 and
coincides with the condition for an ideal plasma given in Eq. (3.1).

Equation (5.16) gives a correct relationship between the recombination
coefficient and the parameters of the problem. This relationship can be
obtained in a simpler way on the basis of dimensional analysis. For the
suggested mechanism of the process (5.15), the rate constant must depend
only on the interaction parameter e?, the electron mass m,, and the thermal
energy T (the electron temperature). There is only one combination of these
parameters that has the dimension c¢cm®/s of the rate constant for the
three-body process, and it can be seen that this combination coincides with
Eqg. (5.16).

The value of the numerical coefficient C in Eq. (5.16) is of interest.
According to the nature of the process, this value does not depend on the
type of atom, because the nature of the process is such that this coefficient is
determined by properties of highly excited states where the Coulomb interac-
tion takes place between the atomic core and electron. Additional analysis
gives C = 4 + 1 for this value.

A similar procedure can be used to determine the rate constant for the
three-body process of conversion of atomic ions into molecular ions, as
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expressed by
AT+ 2A > AT+ A (5.17)

This process occurs because of the polarization interaction between the ion
and atom, so the interaction potential has the form U(R) = —Be’/Q2R*),
where B is the polarizability of the atom. The rate constant of this process
can be constructed by dimensional analysis on the basis of the following
parameters: Be? (the interaction parameter), M (the mass of the atom), and
T (the temperature or a typical thermal energy of the particles). The only
combination with the dimensionality of the rate constant of the three-body
process that can be constructed from these parameters is

( Bez )5/4

K~ MU2T3/4

(5.18)
The same expression for the rate constant of this process can be obtained on
the basis of the Thomson theory (5.13).

5.6 THREE-BODY RECOMBINATION OF POSITIVE
AND NEGATIVE IONS

Three-body recombination of positive and negative ions follows the scheme
A"+ B+ C—->A*+B+ C. (5.19)

The process gives rise initially to a bound state of the positive and negative
ions A* and B, then a valence electron transfers from the field of atom B to
the field of ion A*, and the bound state decays into two atoms A* and B.
The second stage of the process occurs spontaneously during the approach of
the negative and positive ions, so that the three-body recombination is
determined by formation of the bound state of these ions.

We can estimate the rate constant of the process (5.19) using the Coulomb
interaction between the ions and a polarization interaction between each ion
and atom. Assuming the atomic mass to be comparable to the mass of one of
the ions, we use Eq. (4.12) for the cross section of the atom—ion collision and
the Thomson formula (5.13) for the rate constant of the three-body recombi-
nation process. As a result, we have

a  e® [ Be? 172
K=—~—=—7|— . 5.20
The criterion (5.14) for the validity of Eq. (5.20) gives, in this case,
Cle?( Be?)"?
[Cle’(pe”) ™ (5.21)

T3/2
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Inserting the polarizability of the atom, which is several atomic units, into Eq.
(5.21), we find that at room temperature the number density [C] must be
much less than 10% cm 3. Hence, the criterion for the three-body character
of the recombination of positive and negative ions cannot be satisfied if the
gas pressure is of the order of one atmosphere.

5.7 STEPWISE IONIZATION OF ATOMS

The mean electron energy in a gas-discharge plasma is usually considerably
lower than atomic ionization potentials. Therefore single ionization of atoms
can occur only in collisions with high-energy electrons from the tail of the
distribution function. Ionization can also occur as a result of the collision of
an electron with an excited atom. For ionization by electrons that are not
energetic enough to produce ionization directly, the atom must pass through
a number of excited states, with transitions to these states caused by colli-
sions with electrons. This mechanism for ionization of an atom is called
stepwise ionization. We shall estimate the rate constant of stepwise ionization
assuming that the electron energy distribution is Maxwellian, and taking the
electron temperature to be considerably lower than the atom ionization
potential, so that

T, <J. (5.22)

Stepwise ionization of atoms by electron impact can take place only with a
high number density of electrons, so that there are no competing channels
for transitions between excited states. Then the stepwise ionization process is
the detailed-balance inverse process to the three-body recombination of
electrons and ions. In inverse processes, atoms undergo the same transforma-
tions but in opposite directions.

Assume the electrons of the system to be in thermodynamic equilibrium
with the atoms. Then the generation of charged particles is due to stepwise
ionization, and their decay is due to the three-body recombination process,
with the equilibrium expressed by a zero value in the rate equation. That is,
we have the equation

dN,/dt = 0 = N,N,k, — aN,N..

Here N,, N;, and N, are the number densities of electrons, ions, and atoms
respectively, and &, is the rate constant for stepwise ionization.

Since electrons, ions, and atoms are in thermodynamic equilibrium, their
number densities are connected by the Saha distribution (2.17). This gives the
relationship between the rate constants of the inverse processes as

k 4] gegi meTc 2 J 5 23
S'_cha 2 k2 exp _T ’ ( )

e
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where g,, g;, and g, are the statistical weights of electrons, ions, and atoms
respectively, and T, is the electron temperature. Because the rate constants
k. and a/N, do not depend on the number densities, Eq. (5.23) is valid even
if the Saha distribution does not hold. Thermodynamic equilibrium in the
system is used here as a method that allows us to establish a relationship
between the rate constants of direct and inverse processes.

Equation (5.23) together with Eq. (5.16) for the rate constant of the
three-body process gives

k= Al ’ 5.24
=A— ——=exp|—=1, .
st ga ﬁ}r]ﬂg} p TE, ( )
where A = 8 is a numerical factor, which is the same for all atoms.

We can compare the rate constant of stepwise ionization (5.24) with the
rate constant of ionization in a single collision, which is given for the present
case by

« 2g'/? e\(2e)\"?
Kion =fj —;Tl/z—Teg/zCXp —7) - Tion de,

¢ [4

where ¢ is the energy of the incident electron. If the condition (5.22) is
satisfied, this integral converges in the vicinity of the process threshold,
where the cross section for direct ionization has the form o, =
o,l(e/J) — 1], and the parameter o, is of the order of the atomic cross
section. In particular, the Thomson model gives o, = we*/J? in accordance

with Eq. (5.4). Using this expression, the rate constant for direct ionization is

2

8T, \'* J
kion = m g, €Xpi — ? . (525)

[4

Comparing Eqs. (5.24) and (5.25), and taking into account that the atomic
ionization potential is of the order of an atomic unit of energy, J ~ m_e*/#?,
we obtain

w2t 17

[4
4

k ion
k

T,

7/2
~ = < 1. 5.26
5) (5.26)

~

St m(’e

This ratio is much less than unity owing to the condition (5.22) and to the fact
that the ionization potential of the atom, J, is of the order of mee“/ﬁ:.
Hence, if conditions are suitable for stepwise ionization, this process proves
to be more effective at low electron temperatures than ionization by single
collisions.
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5.8 DISSOCIATIVE RECOMBINATION

Dissociative recombination is a process in which a positive molecular ion is
neutralized by recombination with a free electron, as a consequence of which
the molecule dissociates into two parts. The scheme is

e+ AB"— A* + B. (5.27)

As an effective pair process, dissociative recombination is of importance for
plasma properties. Figure 4.9 demonstrates the mechanism of dissociative
recombination that proceeds via autoionizing states of the molecule AB. The
excited state of the molecule AB is an autoionizing state if the distance
between the atoms is smaller than the distance R, to the intersection of this
term with the boundary of the continuous spectrum. In the course of
dissociative recombination, the electron colliding with the molecular ion is
captured into a repulsive autoionizing term. The atoms move apart, and if
the autoionizing state has not led to decay when the atoms reach the
intersection distance R, then the dissociative recombination process occurs.

Dissociative recombination is a fairly complicated process. First, there are
many autoionizing states that can participate in this process. Second, vibra-
tional excitation of the ions has a strong influence on the value of the
recombination coefficient. Therefore, we will not calculate expressions for
the recombination coefficient. We note only that at thermal energies its value
is of the order of, or exceeds, typical atomic values (see Table 13.1). If in this
process complex or cluster ions participate, there is a strong interaction
between the electron and the molecular ion. Then one can use a simple
model for the analysis of this process. Introduce the ion radius R, such that
at smaller distances between the electron and ion, an inelastic transition
takes place because of the strong interaction between the electron and ion at
these distances. This means that if the electron is found in a region of such
size, it is captured by the ion and dissociative recombination occurs. Using
Eq. (5.9) for the rate constant of the process and assuming the electron
behavior to be governed by classical laws, we have for the dissociative
recombination coefficient in this case

a=5R,e?/\m,T, . (5.28)

The parameter R, is several atomic units in size for complex ions and is
equal to the ion radius for cluster ions. Therefore at room temperature the
coefficient of dissociative recombination of an electron and a complex ion
predicted by Eq. (5.28) is of the order of 10~ ® cm?/s. It is sufficiently large to
be significant. Note that the above model, which describes a case of a strong
interaction of the colliding electron and ion, gives an upper limit for the
value of the dissociative recombination coefficient.
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5.9 DIELECTRONIC RECOMBINATION

Dielectronic recombination of an electron and an ion takes place by capture
of the electron into an autoionizing state of the atom and subsequent decay
of the autoionizing state by radiative transition to a stable state. This process
is of importance for recombination of electrons and multicharged ions
because the radiative lifetime of the multicharged ion decreases strongly
(~ Z~*) with increase of its charge Z. The scheme of the process under
consideration is

e+ AtZ [A+(Zal)]**’ (5.29a)
[A+(Z—l)]** - AtZ + e, (5.29b)
[A+(Z—l)]** - A=) 4 B (5290)

We denote the rate constant of the first process as &, the radiative lifetime of
the autoionizing state as 7, the width of the autoionizing level as I', and the
energy of excitation of the autoionizing state [A*(*~ D ]** above the ground
state as E,. We shall obtain the expression for the recombination coefficient
of an electron and multicharged ion for the process described in Eq. (5.29).

The rate equation for the number density N,; of ions in a given autoioniz-
ing state is

dt

where A, is the electron number density, and N, is the number density of
ions of charge Z. From this we find the number density of ions in the
autoionizing state N,, and the rate of recombination J = N,; /7 to be

N, = Nk N NNk (5.30)
¥ OT/h+1/1 T Ir/h + 1
The end result is the recombination coefficient «, given by
J k
a (5.31)

" NN, Trh+l

In order to obtain the expression for the rate constant k for electron
capture in the autoionizing state, we assume there is thermodynamic equilib-
rium between the autoionizing state and other ion states. The Saha formula,
Eq. (2.17), for this autoionizing state is

NZNe gegZ ( meTe )3/2 Ea
Nai - gai 21Tﬁ2 P ’

- (5.32)

4

where g,, g,, and g, are statistical weights for the participating atomic
states, and 7, is the electron temperature. Because thermodynamic equilib-
rium corresponds to T — o, comparison of the first expression in (5.30) with
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Eq. (5.32) gives for the rate constant of electron capture in the autoionizing
state of the ion

(o Bu (2T 21 E, 533

- 8.8z meTe ’lexp _?e . ( . )

Equations (5.31) and (5.33) yield the recombination coefficient of electrons
and ions,

ga (2782)° Tk E, s34

"o \mp) Taric®?\TT ) G

We can summarize the qualitative features of electron capture in an
autoionizing state. The process corresponds to excitation of valence or
internal electrons of the ion, accompanied by the capture of an incident
electron in a bound state. The energy of the incident electron matches the
excitation energy E, of the autoionizing state. Equation (5.33) is obtained
from imposition of the condition of thermodynamic equilibrium among the
atomic particles participating in the process. This requires the Maxwell
distribution function for kinetic energies of the electrons. Hence, we have the
criterion for the validity of Eq. (5.34):

Nk < Nk (5.35)

eer

where k,, is the rate constant for the elastic electron—electron collisions that
establish the Maxwell distribution function. If we have some other energy
distribution function f(e) for electrons of energy &, normalized by the
relation [f(e)dv = 1, Eq. (5.41) takes the form

gy [2mR)] NV ,
a_gegz( - )f( a)m' (5.36)

[4

This expression also requires that the criterion (5.35) be satisfied. This means
that the electron energy distribution function is Maxwellian in its dominant
portion. This makes it possible to introduce the electron temperature; but the
tail of the distribution function, responsible for excitation of the autoionizing
state, may be distorted.

5.10 CHARGE-EXCHANGE PROCESSES

Various resonant processes are accompanied by the transfer of an electron
from one atomic particle to another. Among these processes are resonant
charge exchange, mutual neutralization of negative and positive ions, spin
exchange, and some types of excitation transfer. The electron exchange in
these processes determines their character. We consider the example of
resonant charge exchange and analyze the behavior of its cross section.
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Figure 5.1 Planar section of the potential energy diagram of an electron in the field
of two identical atomic cores. 1 and 2 are positions of the nuclei of the cores, R is the
distance between them, and J is the atomic ionization potential, that is, the electron
binding energy for one atom.

Figure 5.1 shows the nature of the potential well in which a valence
electron is located. If positions of the nuclei are fixed, the electron will
shuttle between one atom and the other. The frequency w of this tunneling
transition depends as a negative exponential on the distance between the
nuclei. The exponent is proportional to the barrier width, so that w behaves
as exp(—7yR), where y=(Q2mJ/%%)"/?, and J is the atomic ionization
potential. This is the essential character of the dependence on R at large
distances between the nuclei.

We can evaluate the dependence of the cross section for this process on
the collision velocity, assuming that the main contribution to the cross section
comes from collisions with large impact parameters. Based on the character
of the transition, it is plausible that the probability of the transition is 1, if a
typical collision time a /v is of the order of the transition frequency w. Here
a is a distance that characterizes the interaction potential between the atom
and ion. From this it follows that the cross section of the resonant charge
exchange process is

o= mwR}/2, where w(R,) ~a/v.
Using the exponential dependence of w on R, we get a result in the form

res = O 11'12(1_)0/1.)), (537)

(o

where v, is a velocity parameter, and o, = 7/(2y?).

Appendix 9 contains values of resonant charge-exchange cross sections at
low energies. Cross sections are seen to depend weakly on collision energy,
and are notably larger than gas-kinetic cross sections. Hence, the resonant
charge-exchange process is far more important than elastic ion—atom colli-
sions in determining the kinetic parameters of ions in a gas of neutral atoms
of the same type (see Chapter 11).



CHAPTER 6

RAREFIED AND DENSE PLASMAS

6.1 CRITERIA FOR AN IDEAL PLASMA

Many varieties of plasmas are known, most of them composed of weakly
interacting particles (see Figs. 1.1-1.3). These plasma systems are analogs of
gaseous systems of neutral particles. When they experience weak interac-
tions, the system of charged particles is an ideal plasma, with the criterion for
plasma ideality expressed by the relations (3.1) and (4.19) between plasma
parameters. The small parameter of the theory has the form

y=N.e*/T}, (6.1)

and the condition to have an ideal plasma is y < 1. Specific values for y can
be estimated on the basis of fundamental physical considerations.

The first criterion for an ideal plasma refers to the condition that the
mean interaction energy of a plasma particle with its neighbors must be small
compared to its kinetic energy 37/2. (We assume in the following that
electrons and other plasma particles have the same temperature.) The
electric potential arising from a charged plasma particle is given by Eq. (3.7),
and is

e=q/r—q/rp, r<rp,

where g is the particle charge, r is the distance from this particle, and r is
the Debye—Hiickel radius. The first term of this expression is the particle
potential in vacuum, and the second term is the electric potential that is
created by the neighboring plasma particles. This means that the average
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interaction energy of a particle of charge e with other plasma particles is
equal to e?/r,, [compare with Eq. (3.11)], and the criterion for an ideal
plasma (e?/r, < 3T/2) leads to the value

y < 9/(32m) = 0.09. (6.2)

A second criterion follows from the condition that many charged particles
are located in the sphere of the radius rp, that is, that 47r3 N, /3 > 1. This
gives the value

y < 1/(961) = 0.003. (6.3)

The two criteria (6.2) and (6.3) contain identical combinations of parame-
ters, but yield different numerical values. The criterion (6.2) is to be pre-
ferred, because it encompasses a larger region in which the ratio of the
potential energy of a particle to its kinetic energy can be small, and it is thus
useful for expansion of plasma parameters. Nevertheless, Figs. 1.1 and 1.2
display both the criteria (6.2) and (6.3) as boundaries between an ideal
plasma and a dense plasma.

The quantity selected to characterize a plasma may not be y, but may
instead be some function of y. Often one uses the coupling constant I" of the
plasma, introduced as the ratio of the Coulomb interaction potential of a
charged particle with its nearest neighbors to the thermal energy,

32 417_,), 1/3
F=—=(T) , (6.4)

where ry, = (47 N,/3)7'/3 is the Wigner—Seitz radius. A dense plasma is one
with I" > 1, and is called a strongly coupled plasma. The condition for the
plasma to be ideal is I' < 1, which implies that

3
<« — =0.2. 6.5
Y oo (6.5)

We can express plasma properties as a function of the plasma coupling
constant I'. The ratio of the average interaction energy of a charged plasma
particle with other particles to its mean kinetic energy has the form

e? 2 4\/5" (2r)*”?
rp 3T 3 ™ T TR

The number of electrons in a sphere of radius r, is

N 4mwri N, 1 1 0.07
D~ 3 6 [—_81ry - (6F)3/2 RV
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In the above discussion, we considered a plasma to be a two-component
system containing charged particles, with each charge having the magnitude
of the electron charge. If a plasma contains multicharged ions, the above
criteria. must refer to the ion charge Ze. An example would be a dusty
plasma, which is a gas-discharge plasma with dielectric particles of micron
sizes. These particles are negatively charged because the electron mobility is
far greater than for ions. Traps introduced into a gas discharge can capture
these particles to form a structure called a plasma crystal. Structures that can
serve as traps include nonuniformities of a gas-discharge plasma, striations,
regions near electrodes, and so on. Typical distances between charged
particles are of the order of 1 um, and the particle charge can reach to
Z ~ 10°-10%, depending on their size and on the conditions of the gas
discharge.

6.2 CONDITIONS FOR IDEAL EQUILIBRIUM PLASMAS

We expect a plasma to fail to be ideal as the plasma density increases.
The nature of this failure will now be examined. Consider a weakly ionized
gas at a low temperature, and ascertain the dependence of the parameter y
on the plasma density when there is equilibrium between charged and
neutral plasma particles. From the Saha distribution (2.17) for the electron
(N,) and atom (N,) number densities in a quasineutral plasma, we obtain the

relation
N2 m,T \*/? J 66
- ¢(3o5z) ew(-7) (6.6)

a

where g = g,8./8.; 8.. 8> and g, are the statistical weights of electrons, ions
and atoms, respectively; and J is the atomic ionization potential. Take the
total number density of nuclei, N = N, + N, (N, = N,), as a parameter, and
determine the dependence y(N).

We write the Saha distribution in the form

R ¥yT3\ C J
vV W‘”‘P(‘?)’

where C = gm}/?e'? /[#*(27)*/*]. Concentrating our attention on plasmas
with the maximum departure from ideal plasma conditions, we choose the
plasma temperature at a given N such that the parameter y is maximal. The
condition dy/dT = 0 leads to the expressions

3T(J = 3T/2) ( m,T \*"? J
TR % (Zwﬁz) p(_7)’ (67)
J—9T/2
e (J—3T/2)' (68)
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The maximum values of vy are located at T < 2J/9, and, in the limit of large
N, the temperature approaches 2J/9. In this limit the degree of plasma
ionization goes to zero as N grows, and the plasma parameter y increases
with the growth of N. On the basis of the above equations, we analyze the
limiting case where there is a fundamental violation of the conditions for an
ideal plasma. We take into account that Egs. (6.7) and (6.8) are valid for
an ideal plasma. The maximum values of y at a given large N lead to
the expressions for the temperature T and the degree of ionization N,/N:

T T oN\zer?] ¢ (69)
N, 3(T-T,)
No2 T (6.10)

The parameter T, is defined as T, = 2J/9. It is evident that the plasma
parameter behaves as y ~ (Nap)'/? in the limit of large N, and the coupling
constant of the plasma is estimated to be T’ ~ (Nap)'/®, where a, is the Bohr
radius. In particular, in the limit of large N, these expressions for a hydrogen
plasma become

N

€

51x10°°

e y=37(Na), T =25(Na)’, (6.11
N (Nag)lﬂ ( 0) ( 0) ( )

with validity constrained by Naj < 1. From this, it follows for the hydrogen
plasma that T = 1 at Na} = 0.004.

One can conclude from these results that the degree of plasma ionization
decreases with an increase of the plasma density. This means that departure
from the ideal nature of the plasma is accompanied by an increase in the
number density of neutral particles. Thus, interaction involving neutral
atomic particles is of importance for the properties of a strongly coupled
plasma.

6.3 INSTABILITY OF TWO-COMPONENT STRONGLY
COUPLED PLASMAS

From the above analysis it follows that a plasma consisting only of electrons
and ions cannot experience major departures from ideal plasma conditions.
However, a dense plasma without neutral particles can be created only
for brief intervals under nonequilibrium conditions. We now estimate the
lifetime of such a plasma and compare it with actual times for plasma
generation.
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The situation examined is that of a dense plasma consisting of electrons
and ions, and the decay of this plasma resulting from ionization and recombi-
nation. The balance equation for the electron number density of this plasma
has the form

dN,/dt = —KN,N,N, + k., N.N,, (6.12)

where N, and N, are the ion and atom number densities, K is the rate
constant for three-body recombination of electrons and ions as given by Eq.
(5.16), and k,,, is the rate constant for stepwise ionization of atoms by

10on

electron impact [Eq. (5.30)]. Equation (6.12) takes into account the processes
2e+ Atoe+ A*oe + A, (6.13)

We are interested in the nonequilibrium case when the number density of
atoms is small compared to a plasma in equilibrium. This corresponds to the
assumption N, = 0, which allows us to neglect the second term in Eq. (6.12).
The lifetime of the nonequilibrium plasma is thus expressed through the rate
constant of the three-body recombination of electrons and ions. The energy
resulting from the recombination process goes into heating of the plasma.

Along with the balance of the electron number density, we take into
account the heat balance of the plasma, described by the equation

d(3N,T) JdN, 614
. dt (6.14)

We assume in this equation that the electron and ion temperatures are the
same, so that the plasma energy per unit volume is 3N,7T. In addition, we
take the thermal energy of the charged particles to be small compared to the
atomic ionization potential (T < J). That is, we assume that the recombina-
tion of one electron with an atom leads to the release of energy J. Then
equation (6.14) takes the form

dT J din N,

dt 3 ar

(6.15)

The equation for the plasma parameter y following from Egs. (6.12) and
(6.15) is

dy/dt = —y*/1, (6.16)

where 7= m!/?e? /(CJT'/?), and we use Eq. (5.16) for the rate constant of
the three-body recombination of electrons and ions. In particular, at the
temperature 7 = 2000 K, the parameter 7 in Eq. (6.16) is 7=5 X 107'¢ s
for a cesium plasma and 7= 107'® s for an argon plasma.

One can compare these times with typical times for plasma generation.
The minimum time for plasma generation corresponds to the use of short-
pulse lasers, and minimum times for laser pulses are of the order of 107" s.
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Hence, the relaxation time 7/y of the plasma being examined exceeds by
orders of magnitude a typical time for plasma generation. This means that it
is impossible to create a strongly coupled plasma of a low temperature
without neutral particles. Therefore, the neutral component of a plasma is
essential to the properties of this plasma. From this it follows that the
determination of plasma properties requires that a neutral component be
included. We contrast this with an ideal plasma, many of whose properties
(such as plasma oscillations, interaction with electromagnetic waves, etc.) are
independent of its neutral components. Thus, the word “plasma” in its
general sense of a system of charged particles is not appropriate for dense
plasma of low temperature, whereas it is a suitable description for ideal
plasmas that are weakly ionized gases at low temperature.

6.4 SPECIAL FEATURES OF STRONGLY COUPLED PLASMAS

The above analysis of a strongly coupled plasma makes it possible to identify
the distinguishing features of such an object. We first present a contrast to a
weakly coupled plasma.

When we apply the term “plasma” to a weakly ionized gas, we concentrate
on properties that are determined by charged particles. These properties of
an ideal plasma do not depend on the presence of neutral particles, even
though the density of neutral particles is greatly in excess of the density of
charged particles. For example, the presence of neutral atoms in the Earth’s
ionosphere has no effect on the character of the propagation of electromag-
netic waves through it. This explicitly plasma property is qualitatively distinct
from such ionosphere properties as thermal capacity and thermal conductiv-
ity that are determined by the neutral component only. We can thus use the
term “plasma” as a universal description of a wide variety of systems of
weakly ionized gases whose electrical or electromagnetic properties are
determined by charged particles only. It allows us to analyze in a general way
the properties of systems that may be very diverse in terms of the properties
arising from their neutral components.

The explanation for this situation is to be found in the character of the
interactions in a weakly ionized gas. There is a short-range interaction
between neutral particles—atoms or molecules—and the long-range
Coulomb interaction between charged particles. These interactions produce
effects that can be treated independently in a gaseous system. Therefore, if a
particular property of this system is determined by a long-range interaction
between charged particles, one can neglect the short-range interactions in
this system. That is, the presence of neutral particles does not affect these
properties of the system. It follows from the nature of this deduction that
such a conclusion can be valid only for systems with weak interactions among
its constituents; that is, it can apply only to gaseous systems. On the other
hand, a strongly coupled plasma is a system with strong interactions among
the particles, and these strong interactions make it impossible to divide
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interactions into independent short-range and long-range types. Therefore
the term “strongly coupled plasma” cannot be employed as a generic descrip-
tion for a wide variety of systems as can be done in the case of an ideal
plasma.

We can illustrate this conclusion with some examples of strongly coupled
plasmas. Consider a metallic plasma. Taking a metal of a singly valent
element, we assume that all the valence electrons contribute to the conductiv-
ity, and that the metallic ions form the metal lattice. Then the electron
number density is N, = p/m, where p is the density of the metal and m is
the atomic mass. For example, in the case of copper, we have N, = 8.4 X 10%
cm ® at room temperature, along with the parameters y = 1.5 X 107 and
I' = 400. Assuming this plasma to be classical, we find that it is a strongly
coupled plasma. Another example of a nonideal plasma is an electrolyte,
which is a solution with positive and negative ions. The high density of
molecules in the solution makes it a strongly coupled plasma.

These examples refer to stationary strongly coupled plasmas. The strong
action of an intense, short pulse of energy on matter can generate a
nonstationary strongly coupled plasma. Plasmas of this type can result from a
strong explosion that compresses the matter. Another example of this type is
the plasma associated with laser fusion, where the target is irradiated by
short laser pulses directed onto the target simultaneously from different
directions. The energy transferred to the target causes extreme heating and
compression, with a dense plasma created as a result.

These examples illustrate the above conclusion for a strongly coupled
plasma: namely, that its properties are determined by interactions involving
both neutral and charged particles. Different physical objects of this type do
not have general properties determined only by the charged particles. There-
fore when one describes a system as a “strongly coupled plasma”, the
immediate implication is that it is not one of a general class with identical
properties as in the case of an ideal plasma.

6.5 QUANTUM PLASMAS

We can treat a dense, low-temperature plasma of metals as a degenerate
Fermi gas. Because of the low temperature and large density, the system has
quantum properties. Let us consider the limit when T = 0, and take into
consideration the Pauli principle according to which two electrons cannot be
in the same state. With the positive charge distributed uniformly over the
plasma volume, this plasma is a degenerate electron gas. At zero temperature
the plasma electrons have distinct momenta p in the interval 0 < p < p.
The Fermi momentum pg is found from the relation

dpdr
neaf Rl
(27#h)
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where # is the total number of plasma electrons, the factor 2 takes account of
the two possible directions of the electron spin, and dp and dr are elements
of the electron momentum and the plasma volume. Introducing the electron
number density N, = n/[dr, we have pp = Q@#?#°N,)!/? for the Fermi
momentum, and the Fermi energy is

pi (3mN)R?

2m (6.17)

8 =
F 2m

4 [4

The parameters of a classical plasma satisfy the relation g << T or
rd N)/* > a;. We define a quantum plasma to be a charged-particle system
characterized by the small parameter

n=T/e, (6.18)

exactly opposite to the condition for a classical plasma.

The Fermi energy is a fundamental parameter of a degenerate electron
gas, and it is this parameter that is used for the analysis of a quantum
plasma. We introduce the parameter characterizing the ideal nature of a
quantum plasma by analogy with Eq. (6.2) as the ratio of the Coulomb
interaction energy of electrons to the Fermi energy, or

e2/ry 2573 0.337

er 3ma,N}'/? B ayN,"*’

(6.19)

where ry, is the Wigner—Seitz radius, and a, is the Bohr radius. The ideal
degenerate electron gas has a large density compared to a characteristic
atomic density: N,a} > 1. From Eq. (6.19), this is equivalent to ¢ < 1. It
means that the larger the electron number density, the more the properties
of a degenerate electron gas determine the properties of a quantum plasma.
To the contrary, the role of the Coulomb interaction between charged
particles of the plasma decreases with increase of the electron number
density.

We can apply the model of a degenerate electron gas to describe the
behavior of electrons in metals. Table 6.1 lists parameters of real metallic
plasmas at room temperature. It can be seen that the parameter 7 is small,
meaning that the metallic plasma has the character of a quantum plasma. But
the Coulomb interaction involving electrons and ions of metals is comparable
to the exchange interaction potential of electrons, determined by the Pauli
principle. Thus, a metallic plasma is a quantum plasma in which the potential
of the Coulomb interaction of charged particles and the exchange interaction
potential of the electrons have the same order of magnitude.

Positive ions of real metals form a crystalline lattice at low temperatures.
An important role in these crystals is played by the non-Coulomb interaction
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TABLE 6.1. Parameters of Metallic Plasmas at Room Temperature

N, n,

Metal 102 ¢m 3 107? £
Li 4.6 55 1.8
Na 2.5 8.2 2.2
Mg 8.6 3.6 1.4
Al 18 2.2 1.1
K 1.3 13 2.7
Cu 8.4 3.7 1.4
Ag 59 4.6 1.6
Cs 0.85 17 3.1
Au 5.9 4.6 1.6
Hg 8.5 3.6 1.4

of free electrons with ions and bound electrons. Consider a simplified
problem where electrons and ions of the metal participate only in the
Coulomb interactions between them. The energy per coupled pair of charged
particles (one electron and one ion) is

3p}
— L 2a71/3
T ke2N}/3, (6.20)

e

where the first term is the mean electron Kinetic energy, the second term is
the mean energy of the Coulomb interaction between charged particles, and
the parameter « depends on the lattice type. Here we take into account the
redistribution of charged particles resulting from their interaction that leads
to the attractive character of the mean interaction energy.

Noting that p. ~ N/* and optimizing the expression (6.20) for the spe-
cific plasma energy, we find that the optimal parameters of the plasma are

S5«
N3 = 5~ 0174,
a N = 3557 K (6.21)
Emn = —25 X 3_5/37T_4/3K2(nle€4/ﬁ2) = —gok’,

where g, = 2.4 eV. This manipulation shows that the system may have a
stable configuration of bound ions and electrons (i.e., &,;, < 0). The stable
distribution of charged particles corresponds to the value of the parameter
¢ = 1.9/«. The system so described is called the Wigner crystal. It can be seen
that the Wigner crystal, like real metals, is characterized by an electron
number density of the order of the typical atomic number density a;°.
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6.6 IDEAL ELECTRON-GAS AND ION-GAS SYSTEMS

The gaseous-state condition for a weakly ionized gas relates not only to
interactions among charged particles or among neutral particles as separate
groups, but also to interactions between charged and neutral particles. The
interaction between neutral atomic particles has a short-range character,
while the interaction of a charged particle with neutrals may be long-range
and is stronger than the interaction between neutral particles. Therefore, one
can expect a violation of the condition for the gaseous state to occur in the
interaction of one charged particle with surrounding particles in a dense gas.
That is, in a system of atoms and a single charged particle, where the
interaction of the atoms satisfies the gaseous criterion, the interaction of the
charged particle with the atoms does not have a gaseous character, that is,
the charged particle interacts with many atoms simultaneously. We now
consider this phenomenon in detail.

We begin by examining the behavior of electrons in a dense gas. The
gaseous character of the interaction between electrons and atoms implies the
condition

= (No) ™' > #, (6.22)

where A is the mean free path of an electron in the gas, o is the cross section
for electron—atom scattering, N is the number density of atoms, and 7 is the
mean distance between particles. We take 7 to be the Wigner—Seitz radius,
so that 7 = (47N /3)"'/3. The electron—atom cross section is represented by
o =47 L? where L is the scattering length for slow electrons scattered by
atoms.

We can write the condition (6.22) as

N < NS, (6.23)
where N¢ = (nL*/3)"'. Table 6.2 lists values of N and the critical
pressure p., = N5T for electron interaction at 7 = 300 K. It is seen that the

gas condition for interaction of electrons with atoms can be violated in a
dense gas.

TABLE 6.2. Critical Parameters for Interaction of Electrons and Ions with a Gas

Gas’ NC‘; 4 pgr > Nclr >
vapor 102" ¢cm 3 atm 102 cm?
He 200 8000 6.3
Ar 90 3000 2.8
Kr 7 300 2.6
Xe 1 50 2.0

Cs 0.03 1 0.12
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The other gaseous conditions for the electron—atom interaction in a dense
gas require that positions of neighboring atoms should not influence elec-
tron—atom scattering . These relationships give

L>rF, pr/h < 1. (6.24)

The first condition in Eq. (6.24) gives N < 3Y/3N,, so that it is less
restrictive than the condition (6.23). The second condition in Eq. (6.24) has
the form

N < N(T), (6.25)
where

383

M) 4w(2m,T)"*

This is independent of the identity of the gas. At a temperature
T = 300 K, we have N, = 2 X 102 cm™?, corresponding to the gas pressure
700 atm.

For a gas consisting of atoms plus ions arising from those atoms, we have
the gaseous-state condition (6.22), where o is the cross section of the
resonant charge-exchange process, and 7 is the mean distance between
particles. The charge-exchange cross section is large, and therefore the
gaseous-state condition for ions is violated at small densities of the gas. Table
6.2 lists values of gas densities N = (m/2)"/%¢=3/? at which the criterion to
have a gaseous state for interaction of ions and atoms is violated at a gas
temperature of 1000 K.

We conclude that electron—atom or ion—atom interactions in a weakly
ionized gas can be nonpairwise even when the interaction between neutral
particles satisfies the gaseous-state condition. Then charged particles interact
simultaneously with several neutrals, and the gaseous character of the inter-
action is lost.

6.7 DECREASE OF THE ATOMIC IONIZATION POTENTIAL
IN PLASMAS

A dense plasma alters the states of its constituent atoms, and thereby can
change the atomic spectrum. In particular, spectra of metallic plasmas differ
significantly from spectra of isolated atoms of the metals. The greater the
plasma density, the more drastic is the change in atomic parameters, includ-
ing the ionization potential. Below we estimate the decrease of the atomic
ionization potential as a function of the plasma density.

The decrease in the ionization potential is caused by two factors. First, the
presence of free ions makes it possible for a bound electron to jump from
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one ion to another, and if such jumps occur freely, this type of excitation
relates to the entire system rather than to a single atom. Second, collisions
between an electron and an excited atom result in transitions between
neighboring levels. If the frequency of such transitions is higher than the
difference between the frequencies of electron circulation in the orbits
corresponding to these levels, one can no longer ascribe discrete energies to
these levels.

According to the first criterion, an atom cannot be regarded as isolated if
its size r, is of the order of the mean distance N,"!/? between neighboring
ions. When we relate the atomic size to the ionization potential J(r, ~ e?/J),
the estimated decrease in the ionization potential is

AJ ~ eN}/3, (6.26)

The decrease of the ionization potential arising from the second mecha-
nism is determined by the relationship

AJ ~AE/k ~ Nya, (6.27)

where v is a typical electron velocity, AJ is the electron energy at which the
electron ceases to be bound, AE is the energy difference between neighbor-
ing levels of a given symmetry for a highly excited electron located in a
Coulomb field, and o is the transition cross section between neighboring
levels of a highly excited atom due to electron impact. We can make a
classical estimate for this cross section. The collision cross section for two
free electrons resulting in an energy exchange in the range from & to ¢ + de
is, according to Eq. (5.2),

2met de

-
my® g?’

0' =
where m, is the electron mass. Hence, the cross section for an electron
collision with a highly excited atom resulting in transfer of energy larger than
the energy difference AE between neighboring levels is

2mret

mp? AE "
The energy difference between neighboring levels of a highly excited atom

with ionization potential J is

2
AE ~J3?

m. et
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From this and Eq. (6.27), the ionization potential of highly excited levels that
make a transition to the continuum is

e2 1/2
J~eNV3—| .
¢ Ne fiv

States with ionization potentials of this order cease to be stationary. Since
v~ yT/m,, the decrease of the ionization potential due to this mechanism

is

(6.28)

mee“ 1/4
KT

AJ ~ eZN;ﬂ(

Though formally the criterion (6.28) is stronger than (6.26), the actual
difference between them is small. From these criteria it follows that the
denser the plasma, the larger is the decrease of the atomic ionization
potential. Note that the decrease of the ionization potential of atoms located
in an ideal plasma is small compared to the thermal energy of the plasma
particles.

6.8 INTERACTIONS AND STRUCTURES IN DUSTY PLASMAS

Strong coupling of a plasma consisting of electrons and singly charged
positive ions takes place if the plasma parameter (6.1) or (6.4) is of the order
of unity, corresponding to densities of charged particles that are comparable
to densities of neutral particles in condensed matter. In the case when the
ion charge Z is large, the plasma parameter (6.4) for ions has the form

ZINI/3p2
o~ —, (6.29)

where T, is the ion temperature and N, is the ion number density. From this
it follows that the plasma parameter increases dramatically for a plasma with
multicharged ions, and strong coupling sets in at relatively small number
densities of ions. This takes place in a gas-discharge plasma that incorporates
micron-sized dust particles. The particle charge is typically Z ~ 10*-10°, so
that a dusty plasma can be a strongly coupled plasma even for small densities
of electrons and other plasma particles.

The field created by a charged dust particle in a gas-discharge plasma is
similar to that of a singly charged particle as expressed in Eq. (3.6), if the
parameter Ze’/(rpT,) is small. Here rp is the Debye—Hiickel radius (3.7),
which is determined by the electrons only, because ions are absorbed by the
dust particle. For the example of an argon plasma in a glow discharge with an
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electron temperature 7, = 4 eV, the number density of electrons and ions is
about N, = 10" cm™® when the particles have a charge Z =2 X 10°.
Electrons will then screen the Coulomb field of a particle on a distance scale
of r, = 100um, and for a radius » = 1um we have Ze?/(r,,T,) = 1. That is,
the ideality criterion fails in this case. If the number density of dust particles
exceeds ~ 10° cm™3, the Coulomb interaction between particles is impor-
tant. For lower particle densities, only neighboring particles interact. We see
that the conditions for an ideal plasma are violated for small number
densities of dust particles.

When small particles in a gas discharge are captured in a trap, they are
localized in the plasma of this trap. Interaction of these particles with ions
and electrons of the plasma and with walls of the trap leads to formation of
small-particle structures within the trap. Such a structure of captured parti-
cles is called a plasma crystal. This crystal is stable and can be considered to
be a well-defined physical object. It has many of the usual properties of
crystals, and like ordinary crystals, the plasma crystal can be melted or can be
dissociated by an external field. However, these processes take place in a
manner unique to plasma crystals.

We shall analyze small particle structures that form in an electric trap of a
gas discharge in a cylindrical tube. Spatial positioning of the particles in
layers depends on the nature of the interaction between particles. We first
consider the case when there is a Coulomb repulsion between particles, and
when all the particles have the same charge. From symmetry considerations,
the particle layers are in planes directed perpendicular to the discharge axis.
The electric field of a layer of charged particles in the plane of the layer
plane is directed along the radius that connects a given point and the layer
center. In the case of the Coulomb interaction, the particles are located on
circles. and within the limits of one circle they form regular polygons. This
occurs when there is a large number of layers.

If the Debye—Hiickel radius of the gas-discharge plasma is smaller than
the distance between nearest particles, and the interaction takes place
between nearest-neighbor particles only, then a different type of structure is
formed. If we take any particle of the layer, its nearest neighbors form a
regular polygon, so that the total force acting on a particle by its neighbors is
zero. The number of polygon vertices is 2k, where k is an integer. Then the
total force acting on each particle is zero. This corresponds to a structure
consisting of regular polygons. Positions of peripheral particles are deter-
mined also by the interaction of particles with a field associated with the
walls of the trap. Hence, the regular structure of particles is altered near
walls of the trap, and the boundary conditions for particles near walls are of
importance for the symmetry of their structure. That is, the particle structure
depends on the spatial form of the electric discharge trap in which charged
particles are captured.



CHAPTER 7

RADIATIVE PROCESSES IN
WEAKLY IONIZED GASES

7.1 INTERACTION OF RADIATION WITH ATOMIC SYSTEMS

Interaction of a plasma with radiation affects plasma properties, and in
systems such as gas lasers or the plasma generated by laser radiation, these
processes determine the plasma parameters. Electromagnetic fields cause
transitions in atomic systems, and Table 7.1 gives a list of single-photon
processes that are of interest for plasmas. The interaction is weak, and is
characterized by the fine-structure constant a = e?/(fic) = 73=. The ratio of
a typical velocity internal to an atom to the velocity of light is approximately
equal to the fine structure constant, and so it is a measure of the nonrelativis-
tic character of the motion of valence electrons in atoms. Another small
parameter that characterizes radiative processes in plasmas is the ratio of the
electric field of an electromagnetic wave to a typical field internal to an atom.
This ratio is small except for extremely intense fields, and so radiative
processes in atomic systems involving absorption or emission of photons
usually proceed slowly on the scale of atomic times.

In external fields, emission of a photon leads to atom transitions to a
lower excited state or to the ground state. The lifetime 7 of an excited atom
with respect to this process is considerably longer than a typical atomic time.
The reciprocal quantity 1/7 (the frequency of spontaneous radiation) with
respect to a characteristic atomic frequency is measured by the cube of the
fine structure constant, [e?/(%c)]®, and hence is lower by at least six orders of
magnitude than the frequency of the emitted photons. In particular, the
radiative lifetime of the first excited state of the hydrogen atom, H(2p),
is 2.4 X 107° s, while the characteristic atomic time is #°/(me*) = 2.4 X

91



92 RADIATIVE PROCESSES IN WEAKLY IONIZED GASES

TABLE 7.1. Elementary Interactions between Atoms and Radiation

Process Scheme of the Process
Excitation as a result of photon absorption fiw+ A - A*
Spontaneous radiation of an excited atom A* > o + A
Stimulated photon emission fiw + A* » 2w + A
Atomic photoionization ho+ A—>At+e
Photodetachment of a negative ion hw+ A > A+e
Photodissociation of a molecule hw+ AB—> A+ B
Photorecombination of an electron and an ion e+ At> A+ ho
Radiative attachment of an electron to an atom e+ A->A+ho
Atomic photorecombination A+B- AB + fiw
Bremsstrahlung in electron-atom or electron-ion collisions etA—-e+A+hw

10~"7 s. The weakness of typical electromagnetic fields in plasmas allows us
to neglect multiphoton processes. In particular, we can ignore two-photon
processes compared to single-photon processes. The lowest excited state of
the atom from which it is possible to have a single-photon transition to the
ground state is called a resonantly excited state. Radiative transitions involving
resonantly excited states of atoms are the main subject of this chapter.

7.1 SPONTANEOUS AND STIMULATED EMISSION

Radiative transitions between discrete states of an atom or molecule are
summarized in a simple fashion in Fig. 7.1. We designate by n_, the number
of photons in a given state. This value is increased by one as a result of a
transition to the ground (lower) state and is decreased by one after absorp-
tion of a photon. Because the absorption rate is proportional to the number
of photons present, we write the probability of photon absorption by one
atom per unit time in the form

W(i,n, - f,n,_,) =An,, (7.1)

where, in accord with Fig. 7.1, we denote the lower state by subscript i and
the upper state by subscript f. Equation (7.1) accounts for the fact that no

Figure 7.1 Collisional and radiative Radiative Collisions
transitions between two states. transitions with electrons
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transitions occur in the absence of photons (n, = 0) and only single-photon
transitions take place. The quantity 4 does not depend on the electromag-
netic field strength and is determined only by properties of the atom.

The probability per unit time for an atomic transition with emission of a
photon can be represented in the form

W(f’”a)—)i’nw—l +1) =1/T+an' (7'2)

Here 1/7 is the reciprocal lifetime of the upper state with respect to
spontaneous radiative transitions (those that proceed in the absence of the
electromagnetic field) to the lower state, and the quantity B refers to the
radiation stimulated by the external electromagnetic field. Both values de-
pend only on atomic properties. The quantities 4 and B in Egs. (7.1) and
(7.2) are known as the Einstein coefficients.

Relationships among the parameters 1/7, 4, and B can be obtained by
an analysis of the thermodynamic equilibrium existing with the atoms and
photons. The relation between the number densities of atoms, N; and Ny,
in the ground and excited states, respectively, are given by the Boltzmann
law (2.9):

N, = EMeXP(_T)’

1

where g; and g, are the statistical weights of the ground and excited states,
and the photon energy fiw coincides with the energy difference between the
two states. The mean number of photons in a given state is determined by the
Planck distribution (2.21):

el

In thermodynamic equilibrium, the number of emissions per unit time must
be equal to the number of absorptions per unit time. Applying this condition
to a unit volume, we have

N W(i,n, = f,i,—1)=NW(f,7,-1-1in,).
From Egs. (7.1) and (7.2), this relation takes the form

N;AR,, = N, (1/7 + B#,,). (7.3)
Using the above expressions for the connection between the equilibrium

number densities of atoms and the equilibrium average number of photons in
a given state, we obtain for the Einstein coefficients that 4 = g,/(g;7) and
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B = 1/7. We then find the rates of the single-photon processes to be

(i’nw f’nw_1)= gfnw’
;T
& (7.4)
1 n,
W(f,llw i’nw_l)=_+ .
T T

Note that thermodynamic equilibrium requires the presence of stimu-
lated radiation, which is described by the last term and is of fundamental
importance.

7.3 BROADENING OF SPECTRAL LINES

The simplest view of the emission of a photon in an atomic transition is that
the photon energy is exactly equal to the difference between the quantum
energies of the initial and final atomic states. A more detailed analysis
identifies a number of mechanisms that cause a departure from this simple
resonance rule, and result in the broadening of both emission and absorption
lines in the spectrum. The width of spectral lines is small compared to the
excitation energy, but it is nevertheless an essential element in the interac-
tion of radiation with atomic gases and plasmas. Therefore, we now turn our
attention to an analysis of the broadening of spectral lines.

We introduce the frequency distribution function a,, that describes rela-
tive amplitudes within the range of frequencies that occurs in both the
absorption and the emission of photons. Then a_dw is the probability that
the radiation frequency lies in the interval from o to @ + dw. All the photon
frequencies are in the vicinity of the central frequency , that is determined
by the relation &; — & = fiw,, where & and &, are the energies of the
ground and excited states of the atom. The width of the spectral line can be
defined as an average deviation |w — w,| that is small compared to w,.
We now examine the mechanisms and the magnitudes of line-broadening
influences.

The simplest broadening mechanism arises from the motion of the emit-
ting atoms. An electromagnetic wave of frequency w,, emitted by a moving
atom with a velocity v, in the direction of propagation of the photon, is
perceived by a stationary detector as having the frequency o given by the
Doppler law

o=yl —-uv/c).

Assuming radiating atoms to have the Maxwell distribution of velocities
(2.15), we find that the frequency distribution of photons measured by a fixed
detector outside the gas is

1 (Mcl)‘/2
a,= — exp

wy\ 7T

a— (7.5)

Mc? (o - wo)z)
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where M is the mass of the atom. To obtain this relation, we assumed that
the emitted frequency is determined solely by the atomic velocity. In addi-
tion, we employed the connection a,, dw = ¢(v,) dv,, between the frequency
distribution function and the Maxwell distribution function ¢(v,) given in
Eq. (2.15). The broadening (7.5) due to motion of the emitting system is
known as Doppler broadening. From Eq. (7.5) one can estimate a Doppler
width of a spectral line as Aw ~ wyv;/c, where v, ~ (T/M)"/? is a typical
thermal velocity of an atom. The Doppler width of a spectral line in gases is
ordinarily less than the photon frequency by about six orders of magnitude.

The other simple broadening mechanism for spectral lines stems from the
fact that the states between which the transition occurs have finite lifetimes.
In order to construct the photon frequency distribution function a_, we
employ the following chain of reasoning. The time dependence of the ground
state wave function has the form y; ~ exp(—ig;t/#), the wave function of
the excited state is ¢, ~ exp(—ig;t/#), and the amplitude of the radiative
transition is proportional to the product Y ~ exp(—twot) The photon
frequency distribution function is proportional to |f, I* where f., is the
Fourier component of the product ;*;. Supposing the states to be station-
ary, we obtain a, = 8(w — w,), that is, when both states in the transition are
assumed to be stationary, the photon energy coincides exactly with the
difference of the energies of the initial and final states in the transition.

Now we take into consideration the finite lifetime of the states. The
probability P, for the atom to remain in its initial state k is determined by
the equation dP,/dt = —P,/7,, where 7, is the lifetime of this state. The
solution is P, = exp (—t/7,), and the time-dependent wave function must be
multiplied by exp[ —¢/(27,)]. The time-dependent amplitude of the transition
is then given by

f(8) = ¢y, ~ exp (iwgt — vi),
where
2v=1/7+1/1,

and 7,7, are the lifetimes of the ground and excited states. From this
we have

1 .=
= — t —iwt) dt ~ ————.
fo=52f f(Wexp(—iwt) di ~ — P
Accounting for a,, ~ |f,|°, and normalizing the photon frequency distribution
function to [*_a, dw = 1, we obtain
v 1
a,= — . (7.6)

T 1}2+(a)—w0)2

The width of the spectral line is of the order of v in this case. The photon
frequency distribution function (7.6) is known as the Lorentz profile of
spectral lines.
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If there are two mechanisms for broadening of spectral lines with the
distribution functions @ and a'?, the resultant distribution function has the
form of the convolution

a,= [ aal, do. (7.7)

We can also treat the case when the broadening is created by both Doppler
and Lorentz mechanisms, and the Doppler width of the spectral line is larger
than the Lorentz width. Then from Eq. (7.7) and also Egs. (7.5) and (7.6) for
the distribution functions 4’ and a®®, it follows that the central part of the
spectral line is described by the Doppler formula (7.6), while the wing of the
spectral line has the Lorentz shape

g, = —— (7.8)

m(w— w0)2 '

7.4 IMPACT BROADENING OF SPECTRAL LINES

Other mechanisms that broaden spectral lines result from the interaction of
the radiating atom with surrounding atoms. The character of this broadening
depends on the density of the surrounding gas. If this density is small, the
broadening results from individual collisions of the excited atom with others
in the gas. Each collision is an independent event, and these events are
relatively infrequent. Most of the time there is no interaction at all of the
excited atom with others, until such time as a strong interaction with a
neighboring atom abruptly occurs. The line broadening caused in this fashion
is called impact broadening. A contrasting type of line broadening takes place
in a dense gas. There the radiating atom interacts simultaneously with many
other atoms in the gas, and the displacement of multiple atoms amounts to a
relatively weak averaged interaction. This mechanism is known as quasistatic
or statistical broadening of spectral lines.

We shall first analyze the impact broadening of spectral lines. As re-
marked above, the effect is a result of separate, independent collisions with
atoms in the gas. For most of its time of existence, the excited atom does not
interact with other atoms, and the amplitude of the radiative transition
depends on time as f(t) ~ *; ~ exp (—iwyt). During a collision the ener-
gies of the excited and ground states of the emitting atom are shifted, and as
a result of the collision the phase of the transition amplitude is also shifted.
The altered time dependence of the transition amplitude can be written in
the form

fQ) ~ g™y ~ exp(—iwut + Yxm(t = tk))'
k
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Here n(x) is the unit step function, that is, n(x) = 0 for x < 0, and n(x) = 1
for x > 0; ¢, is the time of the kth collision; and y, is a phase shift resulting
from this collision. A result in this form means that we assume the collision
time to be small compared to the time between two successive collisions.
Note that if the time between successive collisions is such that y, ~ 1, this is
equivalent to a random value for the phase shift.

Taking the Fourier component of the transition amplitude, the frequency
distribution function of the emitted photons is

T
2

, 1 —exp(—iwgr,)
aw~|fw| ’ fw~ Z

k = W

’

exp(iZXj+i

j<k

where 7, is the time interval between the kth and (k + 1)th collisions. We
can average this expression using the assumption that 7, and x, have
random values. Then we have <exp[i( X — Xk)]>= 8, where the angle
brackets mean averaging over random phases, and the Kronecker symbol §;,
is defined to be 1if j = k, and 0 if j and k are different. Averaging over the

time between successive collisions gives

C(l — cos [(@ — wy)t])

(o~ “’0)2 ’

where C is a normalization coefficient and the angle brackets denote
averaging over the time interval ¢+ between collisions. The time distribution
between collisions is given by P(¢) = exp(—¢/7), where 7 is the average
time between collisions. Averaging on the basis of this distribution function
and normalizing the frequency distribution function g, for emitted photons,
we obtain

T 1
= — (7.9)

W(w—wo)z‘r +1°

w

Impact broadening has a Lorentz profile, as does the broadening due to the
finite lifetime (7.6). The parameter 7 can be estimated to be

1/7 ~ Nuvo, (7.10)

where N is the number density of gas atoms, v is a typical collision velocity,
and o is the cross section for this collision.

In order to understand the nature of the collisions that lead to the
broadening, we assume that particle collisions are classical and that the
ground state of the emitting atom does not participate in the broadening.
Then the broadening is determined by the interaction potential U(R) be-
tween the emitting atom and its neighbors in the gas, where R is the distance
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between them. The main contribution to the cross section is at impact
parameters p ~ p, for which the phase shift y is of the order of unity.
Because the phase shift has the dependence x ~ [U(R)dt/#, this cross
section can be estimated to be

POU( Po) -

o~ pd, where P

1. (7.11)

We can see that this estimate for the broadening cross section coincides with
the total cross section (4.15) for particle collision.

Impact broadening of spectral lines requires that a typical collision time
po/v be small compared to the time (Nvo )~ between successive collisions.
This gives

No3/* < 1. (7.12)

This criterion is fulfilled at small number densities of the atoms constituting
the gas, and has an analogy with the criterion (4.19) for the gaseous state,
even though different collision cross sections are used in Egs. (4.19) and
(7.12). Note that this criterion refers to the total range of emitted frequen-
cies. The function U(R) decreases monotonically with increasing R. Then
since the relation (7.12) gives p, < N~'/3 it follows from (7.11) that

N—1/3u( N—l/3)
Ao

<« 1, (7.13)

under conditions in which the impact mechanism for the broadening of
spectral lines holds true.

7.5 STATISTICAL BROADENING OF SPECTRAL LINES

Another mechanism for broadening of spectral lines occurs in a gas with a
high particle number density. Then one can neglect atomic motions in the
gas, and the shift of the spectral line for given positions of atoms in the gas in
relation to the object atom has the form

0— w, = ! Y V(R)), (7.14)
h J

where R; is the position of the jth gas particle and V(R) is the difference of
the interaction potentials of the emitting and gas atoms for the excited and
ground states of the radiating atom for the separation R between them. It is
evident that we are assuming the interaction of the emitting and gas atoms to
be independent of the positions of other atoms in the gas. This assumption is
justified if the interparticle interactions are weak.
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We take |V(R)| to decrease monotonically with an increase in R. Then
Eq. (7.14) shows that the line shifts from each atom in the gas are additive, so
that the mean width Aw of the spectral line is of the same order of
magnitude as the mean shift. Since the mean distance between neighboring
atoms is of the order of N™!/? (where N is the number density of atoms in
the gas), the mean width Aw as well as the mean shift of the spectral line is
estimated to be

1
Bow~ ZV(NT'?). (7.15)

Now we turn our attention to the photon frequency distribution function
in the wings of the line profile. The shift in the wings of the line profile is
larger than the mean shift, and is created by gas particles located close to the
emitting atom, namely at distances R < N~!/3, The probability for an atom
in the gas to be located in this region is Nd{), where dQ is the volume
element, so that the frequency distribution function at the wing of the
spectral line has the form

1
a,do = NATR*dR,  where w—wy= ~V(R).  (7.16)

In particular, if V(R) = CR™", this equation yields the photon frequency
distribution in the wing of the line given by

J 47 NCY¥" dw (7.17
a,dew = p, (o a) A7)

We now examine the validity of statistical theory for the broadening of
spectral lines. It was assumed that atoms in the gas do not change their
positions during interactions. This assumption will be valid if the distance
that atoms move during the interaction, of the order of v/Aw, is small
compared to the mean distance N™!/? between atoms in the gas. We must
thus require

1
N3} < Aw ~ ;V(N“/"), (7.18)

where v is a typical collision velocity. Assume that the broadening is caused
only by interactions of the excited state of the emitting particle. Then, rather
than use V(R) in Eq. (7.18), we use instead the interaction potential of the
excited state U(R). The condition (7.18) now takes the form

N~l/3U(N——1/3)

L. 7.19
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Equation (7.19) states a condition opposite to the criterion (7.13) for the
validity of the impact mechanism for the broadening of spectral lines. Thus
the impact broadening theory and the statistical broadening theory relate to
opposite limiting cases of the interaction between an emitting atom and the
surrounding atoms in a gas.

The validity of the statistical theory of broadening for the central part of
the spectral line can be written as

No3/? > 1. (7.20)

This is exactly the opposite of the impact-theory criterion in Eq. (7.12). It is
based on the requirement that a typical time 1/Aw during which the
broadening is created be large compared to a typical time R/v through
which the interaction of particles varies. For any part of the spectral line this
criterion has the form

W — Wy >V . .
0 R 7.21

where @ — w, is given by Eq. (7.14). It follows from this that the condition
for the validity of the statistical theory of broadening is better fulfilled for the
wing of the spectral line than for its central part.

There is an intermediate case where the impact theory of broadening is
valid for the central part of a spectral line, whereas the wing of the spectral
line is described by the statistical theory of broadening. Then, as follows from
the impact theory, a transition region between these limiting cases corre-
sponds to the estimate |w — wy|l ~v/R ~ U(R)/%, where R is a typical
distance between interacting atoms that determines a given shift of the
spectral line. Note that the last relation [v/R ~ U(R)/%] gives R ~ Vo,
where o is the total scattering cross section. From this, we conclude that the
photon frequency distribution function in the transition region on the basis of
the statistical theory of broadening has the form

ENR? Na 37 No?
|U(R)| |o — o} v

——i
a, = am d—R

According to the impact theory of broadening, the behavior is

v Nvoc  No?

a =~ P~ ~

“ |w—w0|2 Vo v

We see that both theories predict the same behavior in the transition
region. This confirms once more the connection between the impact and
statistical theories of spectral line broadening as opposite limiting cases of
the interaction between the emitting and the surrounding atoms.
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7.6 CROSS SECTIONS FOR PHOTON EMISSION
AND ABSORPTION

The shape and width of the spectral line determine the cross sections for
absorption and stimulated radiation. We shall now determine this connec-
tion. By definition, the cross section of a process is the ratio of the transition
probability per unit time to the flux of particles causing the transition. In this
case the photon flux is ¢ dN,, where c is the velocity of light, and the number
density of photons is dN, = 2n, dk/(2m)>. The number of photons in a
given state is n,,, the factor 2 accounts for the two independent polarization
states, and dk/(27)* is the number of states in the differential element dk
of the wave vector. Using the dispersion relation w = kc for photons, we
obtain @’ dw/(m?c?) for the photon flux. The absorption probability per
unit time in an interval dw of photon energies is given by An_a, do,
according to Eq. (7.1). Taking the ratio of the reduced transition probability
to the photon flux, we find that the absorption cross section is

mic? 7’ g a,
bs — —Z—Aaw = 3T T . (722)
w 0" g T

g,

The same operation yields the stimulated photon emission cross section

=y (7.23)

We can find the maximum absorption cross section corresponding to the
center of the spectral line. For a given transition, the maximum cross section
corresponds to minimal broadening of the spectral line, so that it is deter-
mined by the radiative lifetime. Then we have a_, = 27/, and the maximum
cross section is

8 c? 8 A
O =27 5 =2 7.24
abs 2 g’_ 2 ( )

i

where A = 27c/w is the photon wavelength. Thus, the maximum absorption
cross section is of the order of the square of the photon wavelength. In
particular, for photons in the optical region of the spectrum, this value is of
the order of 107'-10"Y cm?, and so exceeds typical atomic and gas-kinetic
cross sections by several orders of magnitude.

We can write integral relations for the radiative cross sections. Using the
normalization condition fa, dw = 1, and recognizing that the integral con-
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verges in a narrow region of photon frequencies, we obtain

micl g, 1
[ous(@) dw = -2,
w 8 T
(7.25)
mic? 1
foem( w)ydo=—5—.
w T
These relations are useful for estimations of the cross sections.
7.7 THE ABSORPTION COEFFICIENT
The absorption coefficient k, in a gas is defined by the expression
dl jdx = -k, I, (7.26)

where I is the intensity of radiation of frequency w that passes through a
gas, and x is the direction of propagation of this radiation in the gas. Taking
into account both absorption and stimulated emission, we can express the
absorption coefficient as

N
kw = ]vi%bs - ]Vfo.em = M%bs(l - —_)’ (727)

where the cross sections for absorption (o,,,) and for stimulated emission
(a,,) are given by Egs. (7.22), and (7.23). The number densities N; and N,
refer to populations in the ground and excited states, and g; and g, are the
statistical weights of these states.

From Eq. (7.27) it follows that if the condition
i\/_, < & (7.28)
Ny g
is fulfilled, the absorption coefficient is negative, so that the photon flux
passing through the gas is amplified. A situation where this occurs is known
as an inversion, or as an inverted population of levels, and a medium for which
the condition (7.28) is valid is called an active medium. Active media are used
in lasers, which are generators of monochromatic radiation. In the case of
thermodynamic equilibrium between the ground and resonantly excited states,
Eq. (7.27) has the form

ho
kw=]vio'abs_Nfo'cm=]vi0;1bs l_exp(_—) . (729)
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7.8 PROPAGATION OF RESONANT RADIATION THROUGH A GAS

Radiation that causes transitions between the ground and resonantly excited
states of gaseous atoms is called resonant radiation, and the corresponding
photon is called a resonant photon. We want to examine how resonant
photons propagate through a gas. The mean free path of resonant photons is
small because, for one thing, photons are absorbed by atoms in the ground
state, which normally have a relatively large number density. Additionally,
the absorption cross section near the center of the spectral-line center is
large, and is greater by several orders of magnitude than gas-kinetic cross
sections. Hence, reemission of photons is of importance for propagation of
resonant radiation through a gas.

When the mean free path of resonant photons is small compared to the
dimensions of a gaseous system, the propagation of photons is not diffusive in
nature. The reason is that a photon emitted far from the center of a spectral
line is more likely to propagate large distances than is a photon emitted near
the center, where repeated emissions and absorptions will occur with high
probability. Hence the principal contribution to long-distance propagation of
resonant photons comes from the wings of the spectral line, where the mean
free path of these photons is of the order of the dimensions of the gaseous
system through which the photons propagate.

We now want to examine the flow of photons outside a gaseous system,
assuming that the photon transport process does not affect the density of
excited atoms. We can take the mean free path of photons corresponding to
the center of the spectral line to be small compared to a size L of the system,
so that

koL > 1,

where k, = N,o,(w)) — N;g,,(w,) is the absorption coefficient for line-
center photons, and w, is the central photon frequency. Under these
conditions, thermodynamic equilibrium is established between the atoms and
the line-center photons whose free path length is small compared to the
system size. Let i, be the flux of photons of frequency  inside the gas. Then
the number of photons absorbed per unit volume per unit time in a fre-
quency range from w to w+ dw is given by i, k, dw, where k, is the
absorption coefficient determined by Eq. (7.26). The reduced number of
absorbing photons is equal to the corresponding number of emitting photons,
which is given by N, a, dw/7. Then, on the basis of Eqs. (7.22), (7.23), and
(7.27), we have

a N, (1)2 N, gf
© kTt w2t

-1
— = -1 . 7.30
Tu | (730)

This photon flux is isotropic and can be detected at any point of the
medium that is separated from the system boundary by at least a photon
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mean free path. The photon flux outside a system with a flat surface is

w

-1 .

. /2, /2 l
= i, cos 8d(cos 8 d(cos 8 = —, 7.31
Jo fo o ( )([_ﬁ/2 ( )) 2 (7.31)

Here @ is the angle between the normal to the gas surface and the direction
of photon propagation, and we have taken into account that the total photon
flux outside the system is normal to the system surface. The flux of photons
of frequency w outside the gaseous system is

-1
2 1) ., k,L>1, (7.32)

If the plasma temperature is constant, this expression leads to

2
1

(e’ T-1) ", Kk, L>1. (7.33)

o= 422
Equation (7.33) is identical to Eq. (2.23) for blackbody radiation.

The expression for the radiation flux from a flat layer of plasma has
the form

7.34
o €Cos @ (3)

1, L N xk, dx

Jo= Efod(cos 0)[0 defawexp(—f ),
where the factor 3 takes account of the departure of photons from only one
side of the layer, Na,/7 is the number of emitting photons per unit time
and volume for unit frequency range, x is the distance from the surface, 6 is
the angle between the photon direction and the normal to the surface, and L
is the layer thickness. We assume all the plasma parameters to be dependent
only on x. The quantity

u, = kawdx (7.35)
0

is called the optical thickness of the layer. Using Eq. (7.6) for the absorption
coefficient, one can rewrite Eq. (7.34) in the form

Mﬁ&—)f(ma

2
. w 1 ",
Jo= 3537 fn d(cos B)fo du exp(— N &

cos 8

In particular, Eq. (7.36) follows from Eq. (7.32) if the optical thickness of the
layer is large and the ratio of the number densities of atoms in the excited
and ground states is constant in a range u ~ 1.
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It is possible to estimate the width of the spectral line for photons that
leave the plasma. The boundaries of the spectral line can be estimated from
the relation

u,= [Tk de~ kL~ (7.37)
0

In the case of Lorentz broadening of the spectral line we use Eq. (7.8)
[k, = kgv®/(® — w,)*] for the line wing. The width of the spectral line for
the total radiation flux is then

Aw ~ v/kyL, koL > 1, (7.38)

In the same way, when the spectral line has the Doppler shape (7.5), the
width of the spectral line is

Aw~ Awpy/In(ko L), koL > 1, (7.39)

where Awp, is the width of the Doppler-broadened spectral line in the case
of small optical thickness of the plasma system. Thus resonant radiation
exiting from a gas is characterized by broader spectral lines than is radiation
from individual atoms, because the principal contribution to the emergent
radiation arises largely from the wings of the spectra of individual atoms.

7.9 SELF-REVERSAL OF SPECTRAL LINES

We considered in the foregoing the propagation of resonant radiation in a
uniform plasma. In reality, the temperature on plasma boundaries is smaller
than it is in the bulk of the plasma. The radiation emanating from a plasma
for frequencies near the center of a spectral line originates in a plasma
region near its boundaries. Hence, the radiative flux (7.33) for the central
part of the spectral line is associated with a lower temperature than is that
part of the radiation arising from spectral regions removed from the center of
the line, which is created within deeper layers of the plasma. Therefore, the
radiated flux as a function of frequency has the form shown in Fig. 7.2. There
is a local minimum at the line center. This phenomenon is known as
self-reversal of spectral lines.

It is possible to establish the condition under which the radiated flux has a
dip at the line center. According to Eq. (7.36), this occurs if there is
significant variation in the integrand at distances of the order of the photon
mean free path at the center of the spectral line, given by 1/k,. Equation
(7.36) gives the criterion to have a local minimum of j  as

—_——_— > ] 7.40
k, T dx ( )

when Aw > T.
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®

Figure 7.2 Self-reversal of a spectral line. The spectral line of an individual atom is
given by curve 1; in a gas with a constant temperature this line is broadened due to
reemission (curve 2). The line profile at low temperature near the gas boundary is
shown by curve 3.

7.10 PHOTORESONANT PLASMA

An examination of the propagation of resonant radiation in an excited gas
shows a strong absorption near the center of the spectral line. This means
that resonant radiation can be transformed into excitation of the gas. It is a
property used as a diagnostic technique for the analysis of gases and flames.
The optogalvanic method is based on measurement of a current through an
excited or ionized gas as a function of the radiation wavelength. Absorption
of radiation by certain atoms leads to formation of electrons and ions that
can be detected by changes in the electric current. Calibration of this method
makes it possible to measure the content of some admixtures at very low
concentrations.

A more widespread application based on absorption of resonant radiation
concerns the generation of a photoresonant plasma. To accomplish this, the
energy of the resonant radiation absorbed by a gas or vapor is transformed
into the energy required to ionize the gas. There is a sequence of processes
that determine the generation of a plasma by this means. Resonantly excited
atoms are formed as a result of the absorption of resonant radiation.
Collision of these excited atoms with each other leads to the formation of
more highly excited atoms and subsequently to their ionization. Electrons
released in the ionization process establish an equilibrium with the excited
atoms. As a result, a plasma is formed wherein the electron temperature and
the temperature of the excited atoms are nearly the same.
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Along with the processes that create an equilibrium plasma, plasma decay
processes also proceed. The main decay process is the expansion of the
developing plasma, which determines a lifetime r that behaves as

T~ —, (7.41)

where r is a plasma dimension, and ¢ is the sound velocity, typically of
the order of the thermal velocity of the atoms. Equation (7.41) yields
7~107*-107° s for r ~ 1 cm. During this time the photoresonant plasma
can be used for measurements and applications. Another cause of energy loss
comes from radiation of excited atoms, whose effective lifetime Tos is,
according to Eq. (7.38) for the Lorentz profile of the spectral line, Top ~
7.(kor)'/%. In this expression, 7, is the radiative lifetime of an individual
atom, and k, is the absorption coefficient at the line center.

From this it follows that the generation of a photoresonant plasma has a
threshold character. It is necessary to support the equilibrium in the plasma
during its lifetime. This requires that the number density of excited atoms
and electrons be sufficiently large. In turn, an adequate amount of energy
must be absorbed by the plasma. Using the example of an alkali metal
plasma, we give in Table 7.2 parameters of resonantly excited atoms of alkali
metals and of alkaline-earth metals. Under the conditions we are consider-
ing, the spectral line width Aw for resonant photons in a metallic vapor is

TABLE 7.2. Parameters of Resonantly Excited Atoms®

Atom (state) A, nm T, DS k,, cm™!
Li(*P) 670.8 273 3.6
NaG’P, ) 589.6 16.4 1.2
Na(3°P; ) 589.0 16.3 1.5
Mg(3'P) 285.2 2.1 53
K@4’P, ) 769.9 27 0.9
K@4°P; ) 766.5 27 1.1
Ca4'P) 422.7 4.6 2.9
Zn(4'P)) 213.9 1.4 6.0
Rb(5°P, ) 798.4 28.5 0.8
Rb(5°P; ;) 780.0 26.5 1.1
Sr(5'P) 460.7 6.2 2.3
Cd(5'P)) 228.8 1.7 5.3
Cs(6°P, ) 894.4 31 0.8
Cs(6°P; ;) 852.1 31 0.9
Ba(6'P)) 553.6 8.5 22
Hg6'P) 185.0 1.3 5.6

’A is the wavelength of a resonant photon, 7, is the radiative lifetime
of the resonantly excited atom, and k, is the absorption coefficient
at the line center.
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determined by impact broadening. Then Aw ~ N, where N is the number
density of atoms, and the absorption coefficient at the line center is k, ~
NA? /(A wT,) according to Equations (7.22) and (7.29). Hence, k, does not
depend on the number density of the atoms, and when #w > T it does not
depend on the temperature. Table 7.2 shows the absorption coefficient at the
line center under these conditions.

Assume the effective time of radiation for excited atoms to be small
compared to the plasma expansion time (7.41). Then an equilibrium is
established between absorption and radiation of resonant photons. The
numbers of photons produced per unit time and per unit volume are equal
according to Eq. (7.38), so that N,/ 7., ~ Nf/rr\ﬂ}:}rz, where N; is the number
density of excited atoms, and k is the absorption coefficient at the center of
the spectral line. From this it follows that the equilibrium number density of
excited atoms is

N, = CP/r/?, (7.42)

where P is the power of absorbed resonance radiation, and where a spherical

configuration of radius r is assumed for the photoresonant plasma. The

coefficient C for alkali metals is estimated to be C = 10° W~! em~1/2,
The generation of excited atoms leads to a chain of successive processes

such as
A* + A* 5 A* + A, A * + A-> Aj+e, e+ A*>e+ A (743)

We can make a rough estimate of the parameters necessary for the
equilibrium of a photoresonant plasma. The criterion N;k;, 7> 1 required
for equilibrium between excited atoms and ions must be fulfilled, where &,
is the rate constant for transformation of excitation into ionization. Taking
kion ~107° cm®/s, we obtain N, > 10" cm™?, so that a high level of
excitation must exist in a photoresonant plasma. The power of absorbed
radiation following from Egs. (7.41) and (7.42) is estimated to be P > a /r’/?,
where a ~ 1-10 W /cm®/?, and the total energy of absorbed resonant radia-
tion is &= Pr> const/r’/2, where const ~ 107* J/cm*/2. From this it
follows that a photoresonant plasma can be created by a low-power source of
resonant radiation.

The number density of electrons providing equilibrium between excited
and unexmted atoms must satisfy the inequality N, > 1/(k,7), where k,
1077 cm?/s is the rate constant for quenchmg of resonantly excited atoms
This condition gives N, > 10'* ¢ 3. Usually the number density of elec-
trons in a photoresonant plasma is in the range N, ~ 10°-10" cm ™3, the
temperature of electrons and excited atoms is 7, ~ 1 eV, and the gas
temperature is 7 ~ 1000 K. Thus, pulsed plasmas are sufficiently dense to be
photoresonant.

There are other special features of a photoresonant plasma. Because of
high absorption by resonant lines, a photoresonant plasma can be produced
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by radiation tuned to transitions between excited levels of atoms or to
transitions to ionized states. In such cases an additional source of radiation is
required for the initial excitation of the gas. A simple example of this process
uses a stepwise excitation in which a low-power source of radiation excites
atoms from the ground state, and a high-power source of radiation is tuned
to transitions between excited levels of atoms or to continuum levels.

Another special feature of a photoresonant plasma relates to the heating
of atoms and ions resulting from elastic collisions of electrons with atoms or
ions. In addition, the associative ionization process may give a contribution to
gas heating. Typical times for gas heating are large compared to the lifetime
of a photoresonant plasma. Hence, the temperature of the atoms and ions is
small compared to the electron temperature, though their temperature is
significantly greater than the initial gas temperature.

There are many applications for photoresonant plasmas. In particular,
because a part of the absorbed energy is transformed to energy of the plasma
expansion at the end of the process, a photoresonant plasma is a convenient
way to generate acoustic signals with adjustable parameters. Another type of
application makes use of the high specific absorbed energy. Then a photores-
onant plasma can be a source of multicharged ions. Other applications of
photoresonant plasmas make use of both of these special properties of the
plasma, as well as the possibility of transforming atoms into ions for ease in
their detection.

7.11 RADIATION FROM THE SOLAR PHOTOSPHERE

We concentrated in the foregoing on resonant radiation because of its strong
interaction with excited gases. At large plasma densities and sizes, other
interaction processes between radiation and plasma particles become essen-
tial that are weak in a laboratory plasma. As one such example we shall
examine the radiation of the Sun's photosphere, which is created and
governed by the processes

e+ Heo H + o, (7.44)

We assume that local thermodynamic equilibrium obtains in the photo-
sphere, which is supported by the processes

e+ He 2e+ HY, e+ H o 2e + H. (7.45)

This equilibrium leads to Saha relations between the number densities of the
corresponding particles, which have the form

m,T \** J
e () el

27h?

1({mT\ ¥ &
- _ ¢ 3/2 _Z0
N- 4(27#13) N eXp( T)'

(7.46)
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Here T is the temperature; Ny, N,, and N_ are the number densities of
hydrogen atoms, electrons, and negative ions, respectively; J = 13.605 eV is
the ionization potential of the hydrogen atom; and &, =J/2 — EA = 6.048
eV, where EA = 0.754 eV is the electron affim'ty of the hydrogen atom. We
use the condition of plasma quasineutrality N, = where N, is the number
density of protons. The second expression in Eq. {7 46) is the Saha distribu-
tion for the equilibrium between negative ions, hydrogen atoms, and elec-
trons. In Eq. (7.46) for the number density of negative ions, the electron
number density is taken from the Saha distribution corresponding to the
equilibrium (7.45) between protons, electrons and hydrogen atoms. In the
problem being examined, Ny > N, > N_.

To calculate the radiation flux emitted by the solar photosphere and
observed on the Earth, we conceive of a Sun-centered sphere of radius r—
the distance between Earth and Sun. Because of the uniformity of the
radiation flux on this sphere, we find that the solar radiation flux jE at the
position of the Earth is

]5 = jw(Rz/rz)’

where R is the solar radius, and j  is the radiation flux at the Sun’s surface.
Thus the spectral distribution for radiation near the Sun and the Earth
is the same.

We employ Eq. (7.36) in the form

o 2fd(cos B)f du exp( ) F(u,),

Jo = 27%¢

cos 0

where F(u,) = [exp(hw/T) — 1]7'. Assume the dependence F(u,) to be
weak. Expanding this function in a series

F(u,) = F(uy) + (4, — uo)F'(u5) + 3(u, — ug) F"(uy),

we choose the parameter u, such that the second term is zero after
integration. This yields u, = 2, and the radiation flux is

1 =5F"(ugy)
j =0 — - "7
| i
where j = w?(4m2c?) Yexp(hw/T) — 117! is the radiation flux of a
blackbody at a temperature that corresponds to the point where the optical
thickness is u, = 5. The second term in the brackets of Eq. (7.47) makes it
possible to estlmate the accuracy of the operation employed.

We now apply Eq. (7.47) to the solar atmosphere. Approximating the
height dependence for the number density of negative ions by N_(z) =
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N _(0)exp(—z/1), we obtain from the relation u, = * the expression
N_= (2lg,/3)"" (7.48)

for the number density of negative ions, where g, is the cross section for H™
photodetachment. The effective radiative temperature for a given frequency
is taken to be the temperature of the solar atmosphere at the height implied
by Eq. (7.48).

The photodetachment cross section of the negative hydrogen ion has a
threshold at the photon energy fw = EA, and has a maximum, o, =
4x10""7 cm?, at hw,, = 2EA = 1.51 eV corresponding to the photon
wavelength A = 0.8 pum. Using parameters for the average quiet solar
photosphere, we find from Eq. (7.48) that the effective temperature for this
wavelength is 7., = 6100 K. The layer of the average solar atmosphere with
this temperature contains plasma constituents with number densities Ny =
1x107cm™, N, =4x 10" cm™? and N_= 4 X 10° cm 3. The variation
of the number density of negative ions is determined principally by the
temperature dependence in Eq. (7.46): N_~ exp(—¢,/T). This gives the
effective thickness of a radiating layer

(—al,dlnT

-1
= = 40 km.
T dz ) m
The effective radiation temperature 7,, depends on the photodetachment
cross section o, at this frequency according to Eq. (7.48). Taking it in the
form T, = AT + T;;, we obtain

dz g

dT | O
AT = l—ln( ) .
For example, take iw = 2f w,,, (A = 0.4 um). Then ¢, = 0.650,,,, and we
have AT = 200 K. This corresponds to an increase in the radiation flux by
20% over that at the radiation temperature 7,.
To check the validity of the expansion used for the function F(u,), we
take F(u,) = exp(—fiw/T), which is valid when #w > T. In this case the
second term in the brackets of Eq. (7.47) is

5 F'(u,) 5 (ﬁwd1n7)3 5(ho 1 dInT\’ 5 (ko)
18 F(u,) 18\ T du 18\ T uy dz ) 18\ g |’
where we use Eq. (7.49) and u, = 2. At the photon energy % w,,, the second
term in the brackets of Eq. (7.47) gives a correction of 7%.

In summary, when we assumed the temperature of the solar atmosphere
to be a smooth function of the height, we reduced the problem of the
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radiation from a plasma of variable temperature to the problem with con-
stant temperature. To solve this problem, it was necessary to use two
parameters of the solar atmosphere: Ny (T,) and dT/dz, where the tempera-
ture T, is close to the effective temperature of the radiation. Hence, two
parameters of the solar atmosphere must be introduced into the problem for
the determination of radiation fluxes from the photosphere. Note that the
spectrum of its radiation is close to the blackbody spectrum. Thus, the above
method makes it possible to reduce the problem of radiation by a plasma
with a distribution of temperatures to that of a gas with a constant tempera-
ture. This arises from the character of the radiation process, in that the main
contribution to radiation of a certain frequency comes from layers of the
solar atmosphere whose optical thickness for this frequency is of order unity.



CHAPTER 8

EXCITED ATOMS IN GASES
AND PLASMAS

8.1 EXCITATION AND QUENCHING OF EXCITED STATES BY
ELECTRON IMPACT

Excited atoms play a fundamental role in the properties of weakly ionized
gases and, in particular, of gas discharges. Excited atoms can be responsible
for the generation of the electron component of a plasma, and are basic to an
understanding of the radiation from these systems. Usually, the primary
mechanism for creation of excited atoms in a plasma results from collisions of
atoms with electrons. Below we consider the processes of excitation and
quenching of atomic excited states by electron impact. These processes are
represented by the simple scheme

e+ Ao e+ A*, (8.1)

First we find the connection between the rate constants for the direct and
inverse processes (8.1). The initial and final states of the process (8.1) are
denoted as i and f. We consider one electron and one atom in a volume {1,
and regard all collisions with the walls as elastic. If the interaction between
an electron and an atom is described by the interaction operator V, the
probability of excitation per unit time is

27
wir = ==Vl

2@ _ Ui Ox

8.2
de . Q (8.22)

where V;; is the matrix element between the states in the transition, dg;/de
is the statistical weight of the final state per unit of energy, and v; is the
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relative velocity of collision in the initial channel (which is essentially the
electron velocity since the electron mass is so small compared to that of the
atom). The last expression of Eq. (8.2a) gives the definition of the excitation
cross section a,. In like fashion, one can introduce the transition probability
per unit time for the inverse process (8.1) as

|2dg,- _ Yo,
de Q’

27
Wi = 7|Vf, (8.2b)
where v, is the electron velocity in the final channel, and o is the quenching
cross section.

The principle of detailed balance connects the rate constants for a process
and its inverse. We shall employ this principle to connect the cross sections
for excitation of atoms by electron impact, and for the quenching of that
excitation by electron impact. The principle of detailed balance uses the
invariance of the Hamiltonian with respect to time reversal, so that the
matrix elements satisfy the relation V;, = V;*. This connects the impact cross
sections for atomic excitation and quenching by the relation

dg; dg
f
Uiaa'ex =UfEUq' (83)
This detailed balance relationship for transitions between two discrete states
is quite general.
The statistical weight of the ground state in an excitation is

Q1 dp;

gi(z—wﬁ—)?» (8.4)

dg; =

where g; is the statistical weight of the atomic ground state. We use the same
expression for the final state of the transition and apply the energy conserva-
tion law E = ¢ + Ag, where E is the electron kinetic energy in the initial
channel, £ is the electron energy for the final channel, and Ae is the
excitation energy. From Eq. (8.3) we obtain the result

8:Eo,(E) =gsea¢), (8.5)

where g, is the statistical weight of the excited atom.

In the frequently encountered case of a weakly ionized gas, with the
mean electron energy small compared to the excitation energy, the thresh-
old dependence for the excitation cross section has the form
o, ~VE — Ae ~ Ve. Therefore, near threshold, the rate constant for
quenching, k, = y/2& /m, a,, does not depend on the electron energy when
&£ < Ag. Thus the quenching rate constant in a plasma with slow electrons is
independent of both the mean electron energy and the shape of the electron
energy distribution.
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The quenching rate constant is larger for resonantly excited states than for
metastable states because of a larger interaction probability for an incident
electron with the respective excited states. For example, the quenching rate
constant by impact of a slow electron for the resonantly excited alkali metal
states K(42PV2.3 ,), Rb(S 2P‘/2‘ 32)> and Cs(62P1/2'3/2) are in the range
(3-4) X 1077 cm’/s, while the rate constant for quenching of the helium
metastable state He(2>S) is 3 X 10™° cm?/s.

8.2 EQUILIBRIUM OF RESONANTLY EXCITED ATOMS
IN A PLASMA

Inelastic collisions of electrons with atoms establish thermodynamic equilib-
rium between atoms in the ground and excited states, and as a result of these
collisions the number density N, of atoms in an excited state f is given by the
Boltzmann formula (2.9):

8 Ae
NE =N - 8.6
! (go) Oexp( T )’ ( )

e

where T, is the electron temperature, N, is the number density of atoms in
the lower or ground state, g, and g, are statistical weights of the correspond-
ing states, and Ae is the excitation energy. If the excited state is resonantly
excited, radiative transitions to the ground state may be of importance. This
process may change the character of the equilibrium. Consider the equilib-
rium of resonantly excited atoms in a plasma whose properties are based on
the transitions shown in Fig. 7.1. Then the rate equation (4.4) for excited
atoms has the form

dN; N,

o N, Noko, — NNk, — b (8.7)
where &,k are the rate constants for excitation and quenching of an atom
by electron impact, and 7 is the radiative lifetime corresponding to transport
of resonant photons outside the plasma. In the stationary case dN;/dt = 0,
the number density of excited atoms is

NONekex

= 8.8
N Nokg+1/7 (88)

In the limit of large radiative time 7 — o, the solution of the equilibrium
equation (8.7) is the Boltzmann distribution (8.6). Then Eq. (8.8) can be
expressed in the form

B
Ny

N TR .
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where NfB is the number density of excited atoms in accordance with the
Boltzmann law (8.6); that is, it corresponds to thermodynamic equilibrium
between excited and unexcited atomic states. This equation has broader
applicability than just the application to resonantly excited states. It is
necessary to take as 7 the lifetime of an excited state with respect to its decay
by any channel other than electron collisions—in particular, as a result of
collisions with atoms or by transport to walls.

Equation (8.9) reflects the character of the equilibrium for resonantly
excited atoms. Note that thermodynamic equilibrium is ascertained by com-
parison of the lifetime of excitations 7 in a gas with the typical time (Nekq)’l
of atomic quenching (not excitation!). That is, the presence of thermody-
namic equilibrium is established by the criterion

Nkgr> 1. (8.10)

This is also the condition for validity of Eq. (5.24) for the rate constant of
stepwise ionization of atoms. Indeed, considering this process as a result of
transitions between different excited atomic states, we assume that the
lifetime of an excited atom is determined only by electron collisions. Then
the criterion (8.10) must be fulfilled for excited atomic states that participate
in this process. The lifetime 7 in this formula takes into account atomic
radiation and its transport to walls.

8.3 LIFETIMES OF RESONANTLY EXCITED ATOMS
IN A PLASMA

Because of reemission in a plasma, the lifetime of a resonantly excited state
exceeds that of an individual atom if resonant radiation is retained within the
plasma, that is, if k,L > 1, where k, is the absorption coefficient for the
center of the spectral line, and L is a length characterizing the extent of
the plasma. The connection between the effective lifetime of an excited state
(r.;) which must be included in Egs. (8.9) and (8.10), and that of an
individual atom (r) depends on the character of the broadening of the
spectral line. We shall now examine this connection.

The effective lifetime 7, of excited atoms in a plasma can be defined by

Tes/T=P/Py, (8.11)

where P = Sfj, dw is the radiated power from the total plasma volume for
the radiative transition being examined, and P, = N;Q}/7 is this quantity for
a plasma of small optical thickness when all the emitted photons leave the
plasma volume. Here (1 is the plasma volume, S is the area of its surface,
and j, is the equilibrium radiation flux. We assume the plasma to be
uniform, and make an estimate for 7., on the basis of Eq. (8.11). Equation
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(7.36) gives P, ~ Sj,vu, where v is the width of the spectral line of an
individual atom, and the optical thickness of the plasma is u ~ kL, where L
is the size of the plasma and k, is the absorption coefficient in the line
center. This is to be compared with the estimate P ~ Sj_ Aw, where Aw is
the spectral line width for radiation that leaves the plasma. Thus we have for
the effective lifetime of an excited atom in a plasma

Ty~ ThkoLv/Aw. (8.12)

In particular, using the expressions (7.38) and (7.39) for the width of the
spectral line A w, we find that the effective lifetime of an excited atom in the
case of Lorentz broadening of the spectral line is

np~ koL, koL > 1, (8.13)

and in the case of Doppler broadening of the spectral line it is

Tk L

T Jink,L

A typical size of a plasma system can be estimated as L ~ (1/§. Equation
(8.13) for Lorenz broadening can be written in the form

T.p = 1.81/k Q1/S , (8.15)

where the numerical coefficient is correct within an error of about 25%,
depending on the shape of the plasma boundaries. In the same way, when the
spectral line is Doppler-broadened, the spectral line has the effective lifetime

- Tk, Q) T (8.16)
28 VY In(k,Q/S) '

8.4 STEPWISE IONIZATION THROUGH RESONANTLY
EXCITED STATES

koL > 1. (8.14)

Stepwise ionization of atoms by electron impact refers to a chain of transi-
tions between atomic states as a result of collisions with electrons. Within the
framework of this process, the lifetime of these states is assumed to be large
compared to a typical time for quenching of this state by electron impact. In
practice, the lowest excited state of an atom is usually the resonantly excited
one. That is true, for example, of atoms of alkali metals. This creates a
special character of the excitations of these atoms. First, the resonantly
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excited state has a small excitation energy, and therefore the stepwise
ionization of an atom always passes through this state, while other excited
states may participate in the stepwise ionization process only partially.
Second, the radiative lifetime of the first resonantly excited state is smaller
than for other excited states. Therefore the condition for stepwise ionization
(lifetime much greater than typical quenching time) is violated for this state
at a smaller number density of electrons than for other excited states.

Extracting the first resonantly excited state and considering it separately,
one can extend the condition of stepwise ionization to a lower number
density of electrons. Assuming that this process always passes through the
first resonantly excited state, we can rewrite the expression for the rate
constant k of stepwise ionization in the form

kst = ksfth/NO’

where &/ is the rate constant of stepwise ionization from the resonantly
excited state, and N, and N, are the number densities of atoms in the
ground and resonantly excited states. Then, using Eqs. (8.9) and (5.28), we
find the rate constant of stepwise ionization of an atom by electron impact
to be

g m.e" 1

k. =22 - =1, 8.17
g AT 1+ 1/(Nequ)exP( T) (8.17)

st

where g; and g, are the statistical weights for the ion formed and for the
atom in the ground state, J is the ionization potential of an atom in the
ground state, and 7 is the effective lifetime of the first resonantly excited
state. The validity of this formula depends only on excited states other than
the first.

8.5 ASSOCIATIVE IONIZATION AND THE PENNING PROCESS

Associative ionization proceeds according to the scheme
A*+ B> AB"+e. (8.18)

Its inverse is, in principle, dissociative recombination (see Fig. 4.9). But in
reality these processes proceed through different vibrational states of a
molecular ion AB* and different electron terms of the molecule AB* . It is
favorable for the energetics of the process that the electron energy of the
final state should be lower than that of the initial state. For this reason the
dissociative recombination process proceeds through repulsive terms of AB*,
while in the case of associative ionization it goes through attractive terms of
AB¥*. Hence, the cross section for associative ionization is of the order of
gas-kinetic cross sections for those excited states for which this process
is effective.
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Another ionization process resulting from collisions of excited and unex-
cited atoms is the Penning process

A*+B—->A+B+e, (8.19)

where A* is a metastable atom whose excitation energy exceeds the ioniza-
tion potential of an atom B. The metastable atomic state is an excited state
that, because of quantum selection rules, cannot decay in the presence of
resonant radiation. Such metastable states exist, for instance, in atoms of
inert gases or atoms of alkaline-earth metals, but not in atoms of alkali
metals. Because of the large lifetime of metastable atoms, their concentration
in an excited gas may be sufficiently large that it may sometimes be compara-
ble to the concentration of charged particles. Hence, the Penning process is
important for the generation of electrons and ions under certain conditions
in an ionized gas whose atoms have metastable states.

By its nature, the Penning process occurs in the decay of an autoionization
state A*B. At large distances between nuclei the lifetime of this system is
large because of the weak interaction between atomic particles. Therefore
this process occurs in close collisions, and its cross section is usually smaller
than the gas-kinetic cross section.

8.6 PROCESSES INVOLVING FORMATION OF
A LONG-LIVED COMPLEX

A long-lived complex is an intermediate state formed as a result of the
collision of two atoms. Subsequent evolution of this complex can lead to
formation of a bound state of these particles. For example, the formation of
molecular ions in three-body collisions can occur through the processes

A'+B % (A*B)*, (8.20a)
(A*B)** 5 A"+ B, (8.20b)
(A*B)** + C =5 AB*+ C, (8.20¢)
(A*B)** + C 4 A"+ B + C. (8.20d)

Here (A*B)** is an autodetachment state of the colliding particles, and the
quantities written over the arrows are the rate constants k for the collision
processes or the lifetime 7 of the autodetachment state (A" B)**.

Equations (8.20) lead to the balance equations for the number densities of
autodetachment states,

d
LBy =0

[(ATB)**]

= [Al[Blk, - = [(A"B)**[[C](k, + k),
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where [X] stands for the number density of particles X. The solution of this
equation gives

[Al[B]k.
1/7+ [Cl(kq + ky) '

[(A*B)**] =

However, the balance equation for the process (8.20c) has the form

d[AB"]
dt

k k.t
- kLA B 1IC] = [ANBIC e

A comparison of this balance equation and the definition of the rate constant
for three-body processes shows that (8.20c) can be characterized as a three-
body process only if

[Cl(kq + ky) < 1. (8.21)
Then the three-body rate constant is
K =kkyr. (8.22)
For another limiting case
[Cl(k, + kyg) > 1, (8.23)

the number density of particles C is so high that the rate constant for
formation of the bound state A*B does not depend on this number density,
and the formation of the bound state A*B can be considered to be two-body
in nature with the rate constant

k .k,

k=K[C]=m.
q

(8.24)

The particles C affect the factor k,/(k, + k,) in equation (8.24), which is the
probability that collision of the autodetachment ion (A" B)** and the particle
C leads to formation of the bound state AB™.

In reality, both regimes can be fulfilled for formation of bound states
through formation of a long-lived complex. For example, the lifetime of the
long-lived complex consisting of electrons and large molecules is of the order
of 107°-10"* s, so that the criterion (8.23) is satisfied for number densities
[C] > 10°-10"7 cm™~*. At small number densities for particles C the process
of formation of the bound state is three-body. Note that the Thomson
formula for the three-body process follows from Eq. (8.22) if the collision
time of the particles is used as the lifetime of a long-lived complex.
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8.7 EXCIMER MOLECULES

An excimer molecule is an excited molecule A*B such that the corresponding
molecule AB in the ground state of the atom A has no stable bound state. It
is usually an inert-gas atom that plays this role in an excimer molecule.
Excimer molecules are used in excimer lasers that operate on bound-free
molecular transitions.

Atoms of inert gases Ne, Ar,Kr, Xe in the ground state have a filled
electron shell p®, so that they do not form any chemical bonds. The lowest
excited states of these atoms have the electron shell configuration p’s, so
that their valence electron is found in an s-state, as are valence electrons of
alkali metal atoms. Therefore, an alkali metal atom is a suitable model for an
excited inert-gas atom.

Excited states of inert gas atoms have ionization potentials that are close
to those of alkali metal atoms in the ground state. For example, the lowest
resonantly excited states of the inert gas atoms Ar(’P,) and Kr(*P,) have
ionization potentials 4.14 and 3.97 eV, while the corresponding alka11 metal
atoms in the ground states K(42S) and Rb(5°S) have ionization potentials
434 and 4.18 eV. The analogy between excited atoms of inert gases and
atoms of alkali metals in their ground states means that excited inert-gas
atoms form strong chemical bonds with halogen atoms. For example the
dissociation energy of the lowest state of the excimer molecule KrF(* B, ,»)
is 5.3 eV.

The radiative lifetime of excimer molecules is of the order of that for
excited atoms of inert gases, specifically, in the range 1077-10"% s. There-
fore, generation of excimer molecules requires short pulses of energy. Elec-
tron beams or ultrahigh-frequency gas discharges are commonly used for this
purpose. In these cases a pulse of electrical energy is transformed into the
UV-radiation energy emitted by excimer molecules. The efficiency of this
transformation reaches ten percent.

The transformation of the initial electron energy to energy of radiation
starts from the formation of excited atoms as a result of excitation by
electron impact. In the following stage of the process, these excited atoms
react with molecules containing a halogen or oxygen. This chemical reaction
proceeds according to the so-called harpoon, or avoided crossing, mechanism
(see Fig. 8.1). This refers to a mechanism in which an atom loses an electron
during a collision, with that electron becoming attached to the other partici-
pant in the collision—a molecule that contains a halogen atom. The Coulomb
attraction of the resulting oppositely charged ions causes a closer approach in
the collision than would otherwise occur. As a result, the cross section for
this type of collision is much larger than the gas-kinetic cross section.

We can demonstrate this process by the example

Ar(°P,) + Cl, > Ar*Cl + Cl. (8.25)
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Figure 8.1 The schematic character of molecular terms that exhibit the harpoon, or
avoided-crossing, reaction.

We first compare the two electron terms Ar* + Cl, and Ar*+ Cl; at large
distances between the colliding particles. The first term is of lower energy
than the second at large distances by the amount J — EA = 1.7 eV, where
J = 4.14 eV is the ionization potential of Ar(*P,) and EA = 2.44 eV is the
electron affinity of Cl,. At large distances, a Coulomb interaction exists for
the second term, and at the distance R, = ¢*>/(J — EA) = 16 a, (where a, is
the Bohr radius) these terms intersect. In reality, a pseudointersection of the
terms takes place, so that the terms are separated by a gap at the distance R,
(see Fig. 8.1). At smaller distances between the particles the total system is
found in the lowest term, and a Coulomb interaction occurs between the
colliding particles. This decreases the distance of approach. If we assume
that the rearrangement of chemical bonds occurs at a distance R, < R,
between the colliding systems, then the process (8.25) takes place. Equation
(5.9) gives the rate constant for this process. Thus, the rate constant for
formation of excimer molecules is far greater than the corresponding gas-
kinetic value. This rate constant is 7 X 107" ¢m?® /s for the process (8.25) at
room temperature, and the rate constant for formation of other excimer
molecules lies in an interval 107'°-10"° cm®/s at thermal energies.
Excimer molecules emit radiation in the ultraviolet range of the spectrum
and are characterized by small lifetimes. To give examples illustrating these
statements, we note that an average wavelength A = 193 nm and lifetime
7= 4 ns is exhibited by the excimer molecule ArFCB, ,); A = 175 nm and
7=9 ns by ArCICB,,,); A = 248 nm and 7= 8 ns by KrFCB, ,,); and
=222 nm and 7 = 19 ns by KrC(? B, ,,). Excimer molecules can be formed
with such atoms as Hg, Mg, and Ca instead of inert-gas atoms, and oxygen
atoms can replace the halogens.



CHAPTER 9

PHYSICAL KINETICS OF GASES
AND PLASMAS

9.1 THE BOLTZMANN KINETIC EQUATION

Our goal is to give a mathematical description of the behavior of gaseous
systems of particles including plasmas, and to analyze processes and phenom-
ena that occur in these systems. We employ the physically motivated hypoth-
esis that most of the time a test particle within a gas does not interact with
surrounding particles, and for only a small part of the time, of the order of
Na 372, does it interact strongly with other particles. (Here, N is the particle
number density, o is the two-body collision cross section, and for a gas
No3*/? <« 1; see Chapter 4.) Fulfillment of the criterion for a gaseous state
corresponds to a small probability for three-body collisions, which behaves as
No3/* as compared to the probability of pairwise collisions. Thus, for
description of a gas in first approximation, it is sufficient to take account of
two-body collisions only.

We shall now introduce a particle distribution function f(v, J, r, 1), defined
such that f(v, J,r, ) dv is the number of particles in a unit volume located at
the point r at moment ¢ with velocity in the range from v to v + dv. The
parameter J represents all internal quantum numbers. Hence, the number
density of particles at point r at moment ¢ is

N(r, 1) = Z[f(v, I, t)dv. (9.1)

The distribution function allows one to analyze the evolution of the system.
The equation that describes the variation of the distribution function in time
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is called the kinetic equation. This equation has the form

d
YN (©2)

where I,(f) is the so-called collision integral that takes into account the
variation of the number of particles in a given state as a result of pairwise
collisions.

The left-hand side of the kinetic equation that describes the motion of
particles in external fields is

df  f(v+dv,J,r+dr,t +dt) = f(v,J,r, 1)
dr dt '

In the absence of collisions dv/dt = —F/m, where F is the external force
that acts on a single particle, m is the particle mass, and dr/dt = v. Thus
we have

F of

_ — v - ,
dt Jat ar m Jr

I

and the kinetic equation (9.2) takes the form

af of F of
Py +v o + i I (f). (9.3)
Equation (9.3) is called the Boltzmann kinetic equation.

The collision integral contained in the kinetic equation characterizes the
evolution of the system as a result of pairwise collisions of particles. A typical
relaxation time of the distribution function in a gas can be estimated as
7~ (Nov)™!, where v is a typical collision velocity. This value suggests the
simple approximation

f_fo

T

Ia(f) = - (9.4)

for the collision integral, where f, is the equilibrium distribution function.
This approximation is called the tau approximation. The nature of this
approximation can be illustrated by a simple example. If we disturb an
equilibrium state of the system described by the distribution function f,, so
that the distribution function at the initial time is f(0), then the subsequent
evolution of the system is described by the equation

i _ f-1

dt T
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and its solution has the form

f=fo+ [f(0) = folexp (—t/7).

Thus, the relaxation time 7 of the system is of the order of the time between
consecutive collisions of a test particle with others. It can be dependent on
the collision velocity.

9.2 MACROSCOPIC GAS EQUATIONS

The distribution function contains detailed information about a gaseous
system. A variety of macroscopic parameters of the system can be obtained
by averaging of the distribution function over particle velocities and internal
quantum numbers. Correspondingly, the evolution of these parameters can
be analyzed by averaging of the kinetic equation. This procedure is followed
below in order to obtain equations describing the mean parameters of a
system.

We begin by integrating the kinetic equation (9.3) over particle velocities.
The right-hand side of the equation is the total variation of the density of
particles per unit time due to collisions. Assuming there is no formation or
decomposition of particles inside the system volume, the right-hand side of
the resulting equation is zero, and the kinetic equation becomes

17 d F 7
f—fdv+fv-—fdv+—- (—fd = 0.
at ar m av

We reverse the order of differentiation and integration in the first two terms,
and introduce the definitions (fdv =N and [vfdv = Nw, where N is the
particle number density and w is the mean velocity of the particles, referred
to as the drift velocity. The third term is zero because the distribution
function for infinite velocity is zero. Thus we obtain

N
—- + div(Nw) =0. (9.5)

This is a standard form for a continuity equation.

This equation corresponds to an one-component system where internal
states of the particles are not distinguished. In fact, by definition, [I,(f)dv
is the variation of the particle number density due to collision processes, so
that it is zero for the total number density summed over internal quantum
numbers. If we discriminate internal states, the right-hand side of the
continuity equation is akin to Eq. (4.4), so that the continuity equation has
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the form of the balance equations
oN,
— + div(Nw) = Zkf,-Nj - ZkifNj (9.6)

where indices i/ and f refer to internal states of particles, and k;; is the rate
constant for transition between states i and f.

We can obtain another type of information if we multiply the kinetic
equation by muv, and integrate over particle velocities, using the notation that
v, is a component of the particle velocity, where o =x,y, or z. The
right-hand side of the resulting equation is the variation of the total momen-
tum of the particles due the rate at which collisions occur. For a system of
identical particles, collisions do not change the total momentum of the
particles, so that the right-hand side of the equation is zero and the
macroscopic equation has the form

fmu—fdv+fmuuB fdv+FBf f dv = 0.

Here the indices o and B both denote vector components (a, 8 =x,y, z)
with a summation over 8, and Xg is a coordinate. If we change the order of
the integration and summation in the first two terms and integrate the third
term by parts, we obtain

of o
fuaa—uﬁduﬁ =0 /177 = [8up dog = —No,p,

where 8, is the Kronecker symbol: 8,5 = 1if @ = B, and 8,5 = 0if o # B.
Finally, we obtain

d d
E(mNua) + a_xB(N<mU“UB>) ~NF, =0,

where angle brackets denote averaging over the particle distribution function.
We define the pressure tensor as

Py =m(v, —w,)(v5 — wg)). (9.7)

Inserting this tensor into the above equation, we have
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Subtracting from this the continuity equation in the form

we obtain finally for the momentum equation

dw, 1 9P, ow,
m—2 + — + mw,—= — F, = 0. (9.8)
gt N axg axg

The form of this equation for the mean particle momentum depends on the
representation of the momentum tensor, which is determined by properties
of the system. Below we discuss special forms of the representation of this
tensor. The macroscopic equation for the mean energy has an even more
complicated form.

The macroscopic Egs. (9.5) and (9.8) have been derived for a one-compo-
nent gas. We can generalize these equations to be applicable to multicompo-
nent systems. The right-hand side of the continuity equation is the variation
of the number density of particles of a given species per unit volume and per
unit time due to production or consumption of this type of particle. In the
absence of production of particles of one species as a result of decomposition
of particles of other species, the continuity equation has the form (9.5) or
(9.6) regardless of processes involving other particles.

The right-hand side of Eq. (9.8) for a multicomponent system contains the
variation per unit time of the momentum of particles of a given species as a
result of collisions with particles of other types. If the mean velocities of the
two types of particles are different, a momentum transfer will occur between
them. The momentum transfer between two species is proportional to the
difference between their mean velocities. Therefore, one can rewrite Eq.
(9.8) as

(4) (q) ') (s) _ i@
W, dP aw F, W, W,
I Wa + ()1 ) ali tw—— - L =y T (9.9)
DN
at mONY dxg dxg m, 5 Tys

The superscripts g and s denote here the particle species, and 7, is the
characteristic time of the momentum transfer from the species ¢ to the
species s. Since the transfer does not change the total momentum of
the system, the characteristic time of the momentum transfer satisfies the
relation

mOND /7, = mING /7. (9.10)

9.3 EQUATION OF STATE

The relation between the bulk parameters of a gas (pressure p, temperature
T, and particle number density N) is given by the equation of state. Below
we derive this equation for a homogeneous gas. For this purpose we employ a
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frame of reference where the gas (or a given volume of the gas) is at rest. The
pressure is the force in this frame of reference that acts on a unit area of an
imaginary surface in the system. For evaluation of this force we observe that
if an element of this surface is perpendicular to the x-axis, the flux through it
of particles with velocities in an interval from v, to v, + dv, is given by
dji, = v fdv,, where f is the distribution function. Elastic reflection of a
particle from this surface leads to inversion of v,, that is, v, = —uv, as a
result of the reflection. Therefore, a reflecting particle of mass m transfers to
the area the momentum 2muv,. The force acting on this area is the momen-
tum change per unit time. Hence, the gas pressure —the force acting per unit

area—is
p=

v>

2mu, fdv, = mfuffdux = mN{(v2).
0

We account for the fact that the pressure on both sides of the area is the
same.

In the above expression v, is the velocity component in the frame of axes
where the gas as a whole is at rest. Transforming back to the original axes, we
have

p=mN{(v, — w,)"), (9.11)

where w, is the x-component of the mean gas velocity. Because the distribu-
tion function is isotropic in the reference frame where the gas as a whole is at
rest, the gas pressure is the same in all directions, and we have

p =mN{ (v, = w,))) = mN{(v, = w,)’) = mN((v, — w,)?). (9.12)
This gives a simple expression for the pressure tensor (9.7),
PaB =p6aﬁa (913)

where §,, is the Kronecker symbol. Since this relationship is valid also for an
isotropic liquid, the equations describe not only a gas but also a liquid.

The definition of the gas temperature (2.16) relates the temperature to the
mean particle velocity in the frame of reference where the mean velocity is
zero, so we obtain

3T m

7 = ?<(V - W)2>

Using this in Eq. (9.12), the relationship between pressure and tempera-
ture is

p=NT. (9.14)

Equation (9.14) is the equation of state for a perfect gas.
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Equation (9.8) for the mean particle momentum can be rewritten for the
case when the pressure tensor has the form (9.13). Insertion of Eq. (9.13) into
Eq. (9.8) yields

ow Vp F

— +w-Vw+ — - —=0. (9.15)

at P m
Here w is the mean velocity of the gas, p = mN is the mass density, and F is
the force on a single particle from external fields. In the absence of external
fields (F = 0), this equation is called the Euler equation. Equation (9.9) for a
multicomponent system, with (9.10) taken into account, is transformed in this
case to

P E W, — W,
— +(w, VW, +——-—L=Y Z, (9.16)
J 7 “ p, m, s Ty

9.4 COLLISION INTEGRAL

The collision integral represents changes in the distribution function as a
result of pairwise collisions of particles. We analyze first the collision integral
in the case of an atomic gas, where it is expressed in terms of the elastic
scattering cross section of atoms. The transition probability per unit time per
unit volume is denoted by W(v,,v, = v{,v;), so that Wdv] dv; is the proba-
bility per unit time and per unit volume for collision of two atoms with
velocities v, and v,, if their final velocities are in an interval from v; to
v + dv] and from v to v; + dv}, respectively. By definition, the collision
integral is

Ia(f) = f(f;’féW' —fifiW) dvidv; dv,, (9.17)

where we use the notation that f, = f(v)), W = W(v,,v, - v{,v3), and other
quantities take subscripts according to the same rule.

The principle of detailed balance, which yields the reversed evolution of a
system as would occur in the case of a physical time reversal + — —¢, yields
W = W'. [Compare with Eqgs. (8.2) and (8.3).] The elastic scattering cross
section follows from its definition as the ratio of the number of scattering
events per unit time to the flux of incident particles. The differential cross
section for elastic scattering is

fifoiWdvy dv,vivy,  Wdv, dv,

frdvifadv, vy — vy’

Substitution of this expression into Eq. (9.17) gives the collision integral

La(f) = [(fifs = fif2)lvi = voldodvidvidv,.  (9.18)
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The nine integrations implied in Eq. (9.1) are replaced by five integrations in
Eq. (9.18). This is a consequence of taking into account the conservation of
momentum for the colliding particles (three integrations) and the conserva-
tion of their total energy (one more integration).

The equilibrium of a gas of atoms when the kinetic Eq. (9.3) has the form
I, (f) = 0, combined with Eq. (9.18) for the collision integral, requires that
fif, = fif; for any pair of colliding atoms. Rewriting this relation in the form

In f(v)) +In f(v;) = In f(v}) + In f(v;)

shows that In f(v) is an additive function of the integrals of motion. Taking
into account the conservation of total momentum and total energy of the
atoms, we obtain the general form of the distribution function as

Inf(v)=C, +C,-p+ Cye,

where p and ¢ are the momentum and kinetic energy of an atom. This leads
to the distribution function in the form

f(v) = Aexp[—a(v - w)’].

This expression is exactly Eq. (2.15) for the Maxwell distribution function if
A is the normalization constant, w is the average velocity of the distribution,
and a = m/(2T), where m is the mass of an atom and T is the temperature
of the gas.

9.5 MACROSCOPIC EQUATION FOR ION MOTION IN A GAS

The expression (9.18) for the collision integral provides the basis for a
derivation of the balance equation for jons in a gas subjected to an external
electric field E. If the number density of ions is small compared to the
number density of atoms, elastic collisions with atoms govern the character of
the ion motion in a gas. Using the tau approximation (9.4) for the collision
integral, we obtain the balance equation

eE = mw, /1 (9.19)

under the conditions considered, where w, is the average ion velocity, and 7
is the characteristic time between successive collisions of the ion with atoms.
This time can be estimated as 7 ~ (N,vo) ™!, where N, is the number density
of atoms, v is a typical relative velocity of an ion—atom collision, and o is a
typical cross section for this collision. The left-hand side of this equation is
the force on the ion from the electric field, and the right-hand side is the
frictional force arising from collisions of the ion with the gas atoms. We shall
determine the frictional force below without resort to the tau approximation.
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When we multiply Eq. (9.18) by mv, and integrate over dv,, we obtain
¢EN, = fm(v; —v))gdo f,f, dv, dv,. (9.20)

The quantities v, and v, are the initial velocities of the ion and atom,
respectively, of masses m and m, and number densities N, and N,, and g is
the relative velocity of the colliding particles, conserved in the collision. We
have made use of the principle of detailed balance, which assures the
invariance under time reversal of the evolution of the system, and yields in
this case

fvlf;f; dodv,dv, = fv;f, f,do dv, dv,.

The invariance under time reversal (+ = —1¢) of do dv, dv, must be exam-
ined. If we express the ion velocity v, in Eq. (9.20) in terms of the relative
ion—atom velocity g, and express the center-of-mass velocity V by the relation
v, =g + myYV/(m + m,), then we find that m(v, — v{) = u(g — g'), where u
is the reduced mass of the ion and atom. The relative velocity after collision
has the form g’ = gcos 3 + kg sin 9, where 9 is the scattering angle, and k
is a unit vector directed perpendicular to g. Because of the random distribu-
tion of k, the integration over scattering angles gives [(g — g')do = go*(g),
where o*(g) = [(1 —cos3)do is the diffusion cross section (4.8) of
ion—atom scattering. Thus Eq. (9.20) takes the form

¢EN, = [ugga*(g)fif,dv, dv,. (9.21)

In the case of polarization interaction between the ion and the atom, the
diffusion cross section is close to the cross section of polarization capture
(4.13), and is inversely proportional to the relative velocity g of collision.
Since

J&fif2dvidvy = (W, = W) NN, = wNiN,,

where w; is the average ion velocity, and w, = 0 is the average atom velocity,
Eq. (9.21) leads to

w, = eE/(uN,k.), (9.22)

where k.= 2m/Be’/p is the rate constant of the polarization capture
process, and B is the polarizability of the atom. Note that this formula is
valid at any electric field strength including very strong fields, when the ion
distribution function is very different from the Maxwell distribution depen-
dence on the ion velocities. The integral equation (9.21) can be a basis for the
analysis of ion behavior in a gas in any external electric field.
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9.6 COLLISION INTEGRAL FOR ELECTRONS IN A GAS

The specifics of electron—atom collisions in a gas follow from the small ratio
of the electron mass m, to the mass M of an atom. Even if the electron
momentum experiences a large change as a result of collision with an atom,
the electron energy varies little. Therefore the velocity distribution of elec-
trons is nearly symmetrical with respect to directions of electron motion. If
the electrons move in a gas in an external electric field, their distribution
function can be represented in the form

f(v) = fo(v) + v fi(v), (9.23)

where the x-axis is in the direction of the electric field E.

Assuming the electron number density N, to be small compared to the
atom number density N,, we find that the presence of electrons in a gas does
not affect the Maxwell distribution function ¢(u,) of the atoms, and the
electron—atom collision integral has a linear dependence on the distribution
function f(v). Thus, the electron—atom collision integral /,, has the form

Iea(f) = Iea(f(l) + Iea(uxfl)' (924)

We obtain first the expression for the second term in Eq. (9.23). Using
Eq. (9.17), and taking into account that the velocity v, of an atom does not
change as a result of collision with an electron, and that the magnitude of v,
is small compared to the velocity of the electron, we obtain

L(v.fi) = [(v = v),0do fi(0) ¢(5,) dv,,

where v and v' are the electron velocities before and after collision. By
analogy with the procedure followed above, we obtain [(v' —v) do =
— v, a*(v), where o *(v) is the diffusion cross section (4.8) of electron—atom
scattering. Then, using the normalization condition [¢(u,)dv, = N,, we
obtain

Iea(uxfl) = —Vl.)xf](l.)), (925)

where v = No *(v) is the frequency of electron—atom collisions.

For determination of I,,(f,) we take into account that the change of the
electron energy in any single collision is small compared to the total electron
energy. In a group of such processes, where the variable z changes by a small
increment in each individual event, the system is diffusive in the variable z.
We define the probability W(z, t; z, t) such that the value z occurs at time
t if at moment ¢, it was equal to z,. The normalization condition for this
probability is

fW(zO,t”;z,t) dz = 1. (9.26)
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Because of the continuous character of the evolution of the probability W, it
satisfies the continuity equation

oW dj
— + — =0,
dat dz
where the flux j can be represented in the form
4
j=AW - B—.
9z

Here the first term is associated with the hydrodynamic flux, and the second
with the diffusion flux. By definition, the coefficients of these processes are

1
A(z,t) = lim —f(x —2)W(x,t;2,t + 7) dx,
70 T

1 2
B(z,1) = lim ;f(x — 2 W(x, t;2,1 + 7) dr.
The corresponding equation for the probability is called the Fokker—Planck

equation, and has the form

114 d(AW) 3% (BW)
— == + .
at dz 372

(9.27)

This equation can be generalized for the case when the normalization
condition has the form

fp(z)W(zO,tO;z,t)dz=1

in place of Eq. (9.26). The quantity W in Eq. (9.27) must be replaced by pW,
and the Fokker—Planck equation then takes the form

aw d( pAW)  3*( pBW)
+ .

P or = 9z 922

(9.28)

The right-hand side of this equation can be used as the collision integral of
the spherical part of the electron distribution function, because it describes
the incremental changes of the electron energy. To accomplish this, we
replace W(z, ty; z,¢) in Eq. (9.26) with the distribution function f;, and in
place of z we substitute the electron energy &. Then p(e) behaves as &'/2,
and the collision integral takes the form

d
Iea(f()) = _ApfO + ?;—;(Bpf()) .

p(e) o
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The connection between A and B is found from the condition that if the
distribution function coincides with the Maxwell distribution function, the
collision integral will be zero. This condition yields

ofy  fo

1 J
L.(fy) = Ta)b‘;[l)(a)B(E)(‘g + 7)] (9.29)

where T is the gas temperature.
By definition, the quantity B(e) is

B(e) = %</(a — &)’ Npdo (e - a')>,

where the angle brackets signify an average over atomic energies, and do is
the electron—atom cross section corresponding to a given variation of the
electron energy. We can make use of the constancy of the relative electron-
atom velocity in the collision process, or |v —v,| = [v' — v,|, where v and v/
are the electron velocities before and after the collision, and v, is the velocity
of the atom, unvarying in a collision with an electron. From this it follows
that v? — (v')? = 2v,(v — v'), which yields the result

2

e a

m? [ v} 5 m?
B(e) = 7<?>f(v = V)’ Nodo = T—ENpo*(v).  (9.30)

In Eq. (9.30), {v2/3) = T/M, T is the gas temperature, m, and M are the
electron and atom masses, |[v — v'| = 2vsin(83/2), & is the scattering angle,
and o*(v) = [(1 — cos ) do is the diffusion cross section of electron—atom
scattering. Thus the collision integral from the spherical part of the electron
distribution function has the form

mupdv T

e d d 0
L,(fy) = %Tuzau[v"v( I + fﬂ)] (9.31)

where v = No *(v) is the frequency of electron—atom collisions.

9.7 ELECTRONS IN A GAS IN AN EXTERNAL ELECTRIC FIELD

We now examine the behavior of electrons in an atomic gas subjected to an
external electric field. The number density of electrons is relatively small, so
that collisions between electrons are not essential in this process. The nature
of the electron behavior is determined both by the character of electron—atom
collisions and by the mechanism of the transfer, mediated by the electrons, of
energy from an electric field to the gas. We shall treat this problem formally
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by solving the kinetic equation for the electrons: (eE/m,) df/dv = L,(f).
Taking into account the expansion (9.23) for the distribution function and
expressions (9.25) and (9.31) for the electron—atom collision integral, we
obtain the kinetic equation in the form

v dfo 240

ek
— (=== +fi+v = - + Ly(fo)- .
m v dv fl Dy d VUxfl Iea(fO) (9 32)

e

To solve this equation we first extract from it the spherical harmonics. To
achieve this, we multiply the equation by cos 6 and integrate it over d(cos 6),
where 6 is the angle between the vectors v and E. Then we have the set of
equations

dfy
(IE = —Vl.)fl,
(9.33)
a d(vf;)
37 = L.(fo)
v dv
where a = eE /m,. The solution of this set of equations yields
m dv
fite) = Aewp| - [ 7 )
(9.34)
filv) = T+—Mz”7§f0( )

where u = eE/(m,v) = eE /[m,N,vo*(v)] and A is the normalization fac-
tor. From this it follows that the electron drift velocity in a gas is

ny eE [ 1 d (v 935
Wf_fu"f' v_?)mg o\ v/ (935

where the averaging is done over the spherical distribution function of the
electrons. In particular, if v = const, the electron drift velocity w, and the
mean energy £ are given by

(9.36)
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If o*(v) = const, the distribution functions (9.34) yield in the limit 2> T
[here A = 1/(N,0*))

€ >

m\'/% [eEA
w, = 0.897( )
M m

e

[M
&= 0427/ —— eEA = 0.530 Mw?.

9.8 ELECTRON EQUILIBRIUM IN A GAS

(9.37)

When analyzing the behavior of electrons in a gas, we customarily neglect
electron—electron collisions because of the small number density of electrons
compared to that of atoms. However, this approximation can be violated even
at low electron number densities, for two reasons. First, the change of
electron energy in electron—atom collisions contains a small parameter
m,/M that leads to a small energy exchange between electron and atomic
subsystems. Second, because of the Coulomb interaction between electrons,
electron—electron collisions are more consequential than electron collisions
with neutral particles. Therefore, it is important to examine more precisely
the conditions under which we can neglect electron—electron collisions, and
to analyze the limiting case when energy equilibrium is determined by the
electron—electron collisions. This will now be done.

The electron—electron collision integral can be determined from the
spherical part of the distribution function 7,,(f;). We take into account that
the main contribution to the cross section comes from small scattering angles,
so that the change of the electron velocity Av is relatively small. We denote
by v the velocity of a test electron before collision, and by v' = v + Av the
velocity after collision. Then the corresponding velocities of the second
electron are v, and v, — Av. The relative collision velocity is g =v — v,
before collision, and g' = g + Ag = g + 2 Av after collision. Using Eq. (5.1),
the electron momentum change in the laboratory frame of axes (where one
electron is at rest) is Ap = 2e*/( pg), where p is the impact parameter of
the collision. This gives Ag = Ap/m, and Av = Ag/2 = e?/( pgm,). (Note
that the reduced mass of the colliding electrons is m,/2.)

The expression (9.31) can be used for the electron—electron collision
integral by assuming that the variation of the electron energy resulting from a
single electron—electron collision is relatively small. It is necessary to replace
the gas temperature T in Eq. (9.31) by the electron temperature T, and the
value B(¢) by its definition takes the form

m2v°N. g

1
B(¢&) =5f(a—a’)2Negda'= 5

fszda',
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where the variation of the electron energy in one collision is taken as
g— & =my - Av, and N, is the electron number density. Using the above
expression for Av, we have

J(avy? do = 2“ f’“”dp

mw

Prmi

This integral converges. As the lower limit of integration we take p,;, ~ e*/T,
which corresponds to large scattering angles, and the upper limit of integra-
tion is given by p., ~ rp, where rp is the Debye—Hiickel radius. The
Coulomb interaction of the electrons is taken to be screened by the plasma.
Thus we have

4meNo® [ 1
B.(8) = —5— 2 In A, (9.38)

where In A = In(rpe?/T) is the Coulomb logarithm (5.5), and the averaging
is done over velocities of the second electron. For simplicity we take the case
v > v, (g =) and will consider this condition as a model for a situation
where one cannot make the usual assumption of neglecting the electron—
electron interaction if this indeed results. Then the electron—electron colli-
sion integral is given by the following expression:

4me*N,InA 4 2 af, +&
3 v ov )

L.(fo) = (9-39)

mupdv T,

€

Comparing it with the electron—atom collision integral (9.31), one can see
that the neglect of electron—electron collisions corresponds to the condition

47 et \/

5 77 NlnA

v, (9.40)

where v = N, o *(v) is the frequency of electron—atom collisions.
We now consider the limiting case inverted with respect to (9.40). Then
the first approximation for the kinetic equation

eE of

m_LE = Iea(f) + Iee(fl)) (941)

has the form 7,,(f,) = 0. This gives the Maxwell distribution function for
electrons, where the electron temperature 7, is a parameter. The meaning of
this is that the equilibrium of the energy distribution function is established
by electron—electron collisions, while the drift velocity of the electrons is
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maintained by electron—atom collisions. In order to determine the electron
temperature, we multiply Eq. (9.41) by m,0?/2 and integrate over electron
velocities. We have [(m?/2)1,,(f,)dv =0, because collisions between
electrons do not change the total energy of the electron subsystem. Then Eq.
(9.31) leads to

2 2
eEw, = fm%lea(fo) dv = % (1 - %)( v, (9.42)

In addition, the first equation in (9.33) gives the electron drift velocity

E |V 9.43
e = T, \v /)’ (©.43)
where v is the frequency of electron—atom collisions. Thus we have
Ma? { v?/v)
T,-T= ———5—, 9.44
f e (044

where a = eE /m,. In particular, if » = const, we have

£ T,-T M 2 9.45
w_mv’ e _?we' ( )

If o*(v) = const, Egs. (9.43) and (9.44) yield [with A = (N,0*)"']

4eE X 37
W, = ———— T,— T=—Mwl (9.46)

2w Tm,’ ¢ 32

In practice, the electron concentration ¢, = N, /N, of this regime is not high.
For example, in argon plasma at the temperature 7, = 1000 K, the criterion
for this regime is ¢, > 2 X 1077, and at 7, = 10* Kitis ¢, > 5 X 107°,

9.9 THE LANDAU COLLISION INTEGRAL

Equations (9.38) and (9.39) give the collision integral for electron—electron
collisions, obtained under the assumption of a small change of the electron
energy in any single collision with another electron. This assumption is valid
when the Coulomb logarithm is large, so that small-angle scattering gives the
principal contribution to the electron—electron scattering cross section. This
fact allows us to formulate the problem in another way. Because the electron
momentum varies little in small-angle scattering, one can represent the
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collision integral by the three-dimensional Fokker—Planck equation. This
form of the collision integral is named the Landau collision integral. We
develop it below.

We start from the general expression (9.17) for the collision integral. The
principle of detailed balance for elastic collisions of identical particles has
the form

W(v;,v, = v, vy) = W(vi,v5 = v, V,),

and this, with Eq. (9.17), leads to

L.(f) = _f[f(vl)f(vz) —fODF)]W (v, v, = vi,v2) dvi dvy dv,.

Introducing Av = v; — v,, conservation of total momentum in a collision
gives vj = v, — Av. Then one can reduce the collision integral to

L.(f) = _f[f(vl)f(VZ) = f(v; + &) f(v, — Av)]
XW(v,,v, = v],v5) dvidv, dv,, (9.47)

and the transition probability W(v,,v, = v{,v;) can be written as

vV, +V] v, TV A Av
W=W( T2 ,Av)=W(v1+3,v2—7,Av).

From the principle of detailed balance it follows that the probability W is
an even function of Av. That is, W has the property W(Av) = W(—Av). The
leading term in the expansion of the collision integral in the small parameter
Av is

af(vy) ~ f(v) af(v,)

av, av,

L(f)=~] (f(Vz) )AdeAvdvz.

Since W(v, + Av/2,v, — Av/2, Av) is an even function of Av, this approxi-
mation gives zero. In the second-order approximation in Av we have

I = dAvdv, W IA A el
ee(f) f vav: 2 Br7vlar7u13f2
d d 1 a2
A, fi 9f Af f
V14 dUag 2 Iy, dUyg

N L AN of,
f VAV, Ba v, Iva, ) ° m)lﬁfz fl(h)w ’
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where f, = f(v)), f, = f(v,), A, = Av,, and the summation convention is
invoked, in which any index repeated in a term is to be summed over all
values of that index. One can calculate some of the terms in the above
expression by using the method of integration by parts. We have

1 Jd d JW 4

S [davdv, WA, A, fi 9 —fdAvdva Ag— /i ,

2 V14 dsg « OV1g

d
=—fdAvdv2 f‘ ——(Wf,) = 0,
3 ZB

1 a2 aw 4a
5 [davdv, WA, A, f, /: fdAvdva Ay— is
2 - A0y, 0 Uy 2 auzﬁ

d of;
=—fdAvdv2A Agfi—|w =0,
dv,, auzﬁ

since the distribution function is zero at v,z — +%. After elimination of
these terms we obtain

I ! dAvdv, A A, | W el
ee(f) - 2/ vav, a, B (7’-)1“ aUIB 2
_Wﬁfl af N iw of, . W 4f,
G, Vyg I, GDg 0 Iy, Fag
__ %
v’

where the flux in electron-velocity space is

af,
fd"z(f1 ik ! fZ)DaB’

aum Vg

1
D, = EanABWdAv.

This symmetrical form of the electron—electron collision integral is called
the Landau collision integral. It is analogous to the right-hand side of the
Fokker—Planck equation in velocity space. For evaluation of the tensor D, g,
Egq. (5.1) gives

2e%,
pigm,’

a
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where g is the relative velocity of the colliding electrons. This gives

1 1
D, = EanABWdAv = EanABgda

2et . p,
= fp fB do.
m,g’ p

To aid in the evaluation of this tensor, we first take the direction of the
collision velocity g to be along the x-axis, and take the plane of motion to be
the xy plane. Then only A is nonzero, so that only the tensor component
D,, is nonzero. For this component of the tensor we obtain

2e4 .1 4mret

D, = - gf——ZZﬂ'pdp =

€ e

In A,

where the integral over impact parameters of the collision are evaluated in a
straightforward way, and In A is the Coulomb logarithm. Next, taking into
account that the direction of the relative velocity of collision is a random
value, one can write the expression for the tensor D, in an arbitrary frame
of reference. Because this tensor is symmetric with respect to its indices, it
can be constructed on the basis of the symmetrical tensors 8,5 and g,gg. It
is evident that it has the form

D 4zet A
a = gjgagt} na.

€

The Landau collision integral that represents collisions between electrons
is thus of the form

djg

Iee(f) = - o ?

1y

af2 afl

s = |dv, - D,g, 9.48
js={ v_(flauzﬁ 70,12 | P (9:48)

47et

DﬂB = Wgagﬁ In A.

It is analogous to Eq. (9.39) for the electron energy space, and is a version of
the Fokker—Planck equation.
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9.10 EXCITATION OF ATOMS IN A PLASMA

Inelastic collisions of electrons and atoms in a gas can affect the electron
distribution function, because such collisions remove fast electrons whose
energy exceeds the atomic excitation energy. This part of the distribution
function can be restored by elastic collisions of electrons. Competition of
these processes establishes the distribution function and determines the rate
of atomic excitation. We shall now analyze this problem and evaluate the rate
of atomic excitation in a plasma. We consider the case of a high electron
density where the electron distribution function in the principal range of
electron velocities is Maxwellian. This corresponds to the condition B,, >
B,,, where B,, and B,, are the coefficients in the Fokker—Planck equation
(9.28) that are given by expressions (9.30) and (9.38). In the case being
considered, these quantities are taken at the excitation energy Ae of the
atom. Hence, the condition (9.40) has the form

N,

N. m, 3TAea,*(vy)

>
N M  2me*ln A

a

(9.49)

in this case, where ¢,,*(v,) is the diffusion cross section for electron—atom
elastic collisions at the velocity v, = Y2 Ag/m, and In A is the Coulomb
logarithm.

In analyzing the character of atom excitations in a plasma, we assume for
simplicity that excited states decay only by radiation. That is, we assume that
quenching by electron impact does not occur. We shall consider two limiting
cases of atomic excitation. In the first case, the Maxwell distribution function
obtains at all velocities because electron—electron collisions restore it in the
region of high electron energies. In the second case, processes restoring the
distribution function are weak, and all the electrons at energies £ > Ae
expend their energy in the excitation of atoms.

The excitation rate in the first case is

dN
dt

*

= Na'/'47ru2 dv p(v) vk, (V),

where N, is the number density of excited atoms, N, is the number density
of atoms in the ground state, () is the Maxwell distribution function of the
electrons, and k. is the rate constant for atomic excitation by electron
impact. Using the principle of detailed balance (8.5) for excitation and
quenching of atoms, we have near the excitation threshold

p =g.kq e— Ae

& & Ae
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where k_ is the rate constant for quenching of the excited atom by a slow
electron, and g, and g, are statistical weights for the ground and excited
states of the atom. From this, it follows that the excitation rate is

dN, N,N,k.g. Ae 950
d g cxp T, ) (9:50)
so that the effective rate constant of the atom excitation process is
- 8-k, ( Ae )
ke, = exp| ——]. (9.51)
8o Te

In the other limiting case, the excitation rate is determined by electron
diffusion to the boundary of the region in energy space where excitation is
possible. Hence, on the basis of the kinetic equation (9.3), we have

dN, o ,  Of » 5
— - /0047”) do— = —/Unm dvl,.( f,)
4ty fo dfy
= Bee 0 T T g
. T, de

where the distribution function f, in the final expression is taken at the
energy Ae. The form of the distribution function follows from the equation
1,.(fy) = 0 and the boundary condition fy(v,) = 0. The result is

)3/2[exp(—%)—exp(—¥)], e<Ae. (9.52)

-4 €

e

27T,

fo(v) =Ne(

Using this distribution function and the expression (9.38) for B, (v), we
obtain

- (9.53)

-4

dN. 8/2 NPe*Asin A Ae
i~ 3 mert P\TT

Equation (9.51) is valid at high electron number densities, in which domain
establishment of equilibrium for the electron velocity distribution function
takes place rapidly. The corresponding condition has the form

Ne/jva > kq/kCoul ’ (954)

where the effective rate constant k., for the Coulomb interaction of
electrons is

k 8/2 8 ¢t [T, A81 A 9.55
Coul — 3 g_*T_ez me T n . ( )

e
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Equation (9.53) is valid under the condition opposite to that of (9.54). It is
evident that the criterion (9.54) is much stronger than (9.49) because m, < M.
Thus both regimes being considered for atomic excitation in a plasma are
possible. At relatively small electron number densities, the distribution func-
tion is given by Eq. (9.52), while the Maxwell distribution function for the
electrons is valid at high degrees of ionization. Correspondingly, the expres-
sion for the atomic excitation rate varies from (9.53) up to (9.50) as the
electron number density increases.

For comparison, we consider the case of a small number density of
electrons and find the electron distribution function in the energy region
€ = Ae. Then it is necessary to include in the kinetic equation for electrons
the contribution of inelastic electron—atom collisions. We assume that
quenching of the excited atom proceeds by a mechanism other than electron
impact because of the small number density of electrons. Then the kinetic
equation (9.33) takes the form

a d
e =
~ 3,7 E(U f1) = La(fo) = Veu S
where v, = Nk, N, is the number density of atoms, and k., is the rate
constant for excitation of the atom by electron impact. The collision integral
1,, takes into account elastic electron—atom collisions. Using the connection
(9.33) between f,, and f,, we obtain

a d (v?df, / 0

302 dv v dv ed(fO) Vexf(]

as the equation for f,. When we use the expression for the electron—atom
collision integral in Eq. (9.31), and neglect the atomic kinetic energy (~ T')
compared to the electron energy, we have

a d UZ dfO m, 1 d 5 0 0 56
— [ 1 a 3 _0 |
302 dv\ v dv M ? dU(U vfo) = Ve fo (9.56)

We assume that the average electron energy £ is much smaller than the
atom’s excitation energy A ¢. It then follows from Eq. (9.36) that & ~ Ma?/v2.
Furthermore, we assume that atomic excitations influence the electron distri-
bution function, so that

ae 9.57
A (9.57)

m,

y > Voy >

This allows us to neglect the second term of the kinetic equation (9.56). We
can solve the resulting simplified kinetic equation for the tail of the distribu-
tion function by a quasiclassical method, accepting that f, = 4 exp(S), where
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S(v) is a smooth function. We mean by that statement that (§')? > S”. This
gives §' = /3y, v /a, a = eE/m,, and the distribution function for £ > &
has the form

v 3,V
fo(v) = fo(vy) exp (—fdvT : (9.58)

Yy

where v, = /2 Ae/m, and fy(v,) is determined by elastic electron—atom
collisions. Near the threshold for atomic excitation, this formula gives

2 /3u,v (v-v 2 g,
S== (b-%) ™ 8. C(v—v,)"?, (9.59)
3 a Ug 8o

where v, = v(vy), v, = Nk, k, is the rate constant for quenching of the
excited atom by electron impact, g, and g, are the statistical weights of the
ground and excited atom states, and we use the principle of detailed balance
to connect the rate constants of atomic excitation and quenching by electron
impact. Note that in the case of large electron densities when the electron

distribution function is Maxwellian, this quantity has the form

c— Ae ,e— Ae
—. (9.60)
Ma-

S = = 3§

T,

4

Here, for simplicity, we assume that »(v) = const. Because of the criterion
(9.57), Eq. (9.60) gives less of a decrease of the distribution function with
increase in the electron energy than follows from Eq. (9.59). On the basis of
the distribution function (9.58), we obtain the atomic excitation rate

dN,
dt

2 4/3
= vpfo(vo)a

=[ 40 dofy(0) Nyker (0) = =575, (9.61)

Uy Vo

where

avex

=10 8obo

. N,k _ Nakqg,.

We considered above the excitation of atoms in a plasma under conditions
where the detachment of excited atoms is not due to electron impact but is
determined by other processes. This corresponds to a condition opposite to
that of Eq. (8.10). Now we consider the case when the criterion (8.10) is
satisfied. Then, based on the condition (9.57), we have the situation where
fast electrons are generated and destroyed as a result of inelastic collisions
between electrons and atoms. Because of the equilibrium between the atomic
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states involved, we find
,
Ve fo(0)0* dv = w, fo(V') 0" dV .

Here, we have v? = 2 Ae/m, + u’z, v and v are the velocities of fast and
slow electrons, and v, = Nk, v, = N;k, are the frequencies of excitation
and quenching of atomic states by electron impact. Then with N, and N,
giving the number densities of atoms in the ground and excited states,
respectively, and with the rate constants k. and k, for the corresponding
processes connected by the principle of detailed balance (8.5), we have

N, N. i ThAe
g—fo(v) = g—fo(VU2 o), u> :
0 *

m

This relation establishes the connection between the distribution functions
of slow and fast electrons. The relation can be written in the form

fo(”o)fo(vu2 - Ug)
fo(0) ‘

In particular, for the Maxwell distribution of slow electrons [f, ~
exp (— &/T,)] this expression gives

fo(v) = (9.62)

- (9.63)

e

e— Ae¢
fo(v) = fo(vy)exp (—),

where 7, is the electron temperature, and & = mv%/2 is the electron energy.
Thus, in this case, inelastic collisions restore the Maxwell distribution func-
tion above the threshold for atomic excitation.

The cases of atom excitation in a plasma treated above show that this
process depends on the nature of the processes that establish the electron
distribution function near the excitation threshold. The result depends both
on the rate of restoration of the electron distribution function by
electron—electron or electron—atom collisions, and on the character of the
quenching of excited atoms. Competition of these processes yields a compli-
cated form for the electron distribution function and for the excitation rate of
atoms in a plasma.



CHAPTER 10

TRANSPORT PHENOMENA
IN GASES

10.1 TRANSPORT OF PARTICLES IN GASES

Parameters of thermodynamic equilibrium such as the number density of
atoms or molecules of each species, the temperature, and the mean velocity
of atoms or molecules, are constants in a region. If some of these values
should vary in this region, appropriate fluxes arise in order to equalize these
parameters over the total volume of a gas or plasma. The fluxes are small if
variations of the parameters are small over distances of the order of the
mean free path for atoms or molecules. Then a stationary state of the system
with fluxes exists, and such states are conserved during times much longer
than typical times between particle collisions. In other words, the inequality

A< L, (10.1)

is satisfied for the systems under discussion, where A is the mean free path
for particles in collision, and L is a typical size of the system or a distance
over which a parameter varies noticeably. If this criterion is fulfilled, the
system is in a stationary state to first approximation, and transport of
particles, heat or momentum occurs in the second approximation in terms of
an expansion over a small parameter defined in accordance with Eq. (10.1).
Various types of such transport will be considered below.

The coefficients of proportionality between fluxes and corresponding
gradients are called kinetic coefficients or transport coefficients. For in-
stance, the diffusion coefficient D is introduced as the proportionality factor

147
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between the particle flux j and the gradient of concentration ¢ of a given
species:

j= —-DNVc. (10.2)

Here N is the total particle number density. If the concentration of a given
species is low (¢, < 1), that is, this species is an admixture to the gas, the
flux of particles of this species can be written as

j= —-DYVN,, (10.3)

where N, is the number density of particles of the given species k. The
thermal conductivity coefficient « is defined as the proportionality factor
between the heat flux q and the temperature gradient,

q= —«VT. (10.4)

The viscosity coefficient 7 is the proportionality factor between the frictional
force acting on a unit area of a moving gas, and the gradient of the mean gas
velocity in the direction perpendicular to the surface of a gas element. If the
mean gas velocity w is parallel to the x-axis and varies in the z-direction,
the frictional force is proportional to dw,/dz and acts on an xy surface in
the gas. Thus the force F per unit area is

F= —qnow./oz. (10.5)

This definition, as well as the previous ones, refers to liquids as well as gases.

We can estimate the value of the diffusion coefficient. The diffusive flux is
the difference of fluxes in opposite directions. Each of these, in order of
magnitude, is N,v, where N, is the number density of particles of species &,
and v is a typical velocity. Thus the particle flux behaves as j ~ AN, v, where
AN, is the difference of the number densities of oppositely directed particles
participating in the transport. Particles that reach a given point without
collisions have distances from it of the order of the mean free path A ~
(No)™ !, where o is a typical cross section for elastic collisions, and N is the
total number density of gas particles. Hence AN, ~ AVN,, and the diffusive
flux behaves as j ~ AvVN,. Comparing this with the definition of the diffu-
sion coefficient (10.2), we obtain

VT

D ~vA~ .
Novm

(10.6)

Here T is the gas temperature, and m is the mass of particles of a given
species, assumed to be of the same order of magnitude of the masses of other
particles constituting the gas. In this analysis we do not need to consider the
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sign of the flux, because it is simply opposite to the number density gradient,
and tends to equalize the particle number densities at neighboring points.
The same can be said about the signs of the fluxes and gradients for the
other transport phenomena.

10.2 DIFFUSIVE PARTICLE MOTION

We now examine the properties of diffusion. The continuity equation has the
form N, /dt + divj = 0 [compare with equation (9.5)]. The continuity equa-
tion is a statement of the fact that particles are neither lost nor generated in
a region. For simplicity, we consider the case N, << N and omit below the
subscript k. Diffusive motion can be referred to test particles in a single-
component gas. Using the expression (10.3) for the flux in the continuity
equation, the equation describing the diffusive motion of particles is

ON
— = DAN, (10.7)
ot

where A is the Laplacian operator. It follows from this that a characteristic
time for particle transport over a distance of the order of L is 7, ~ L?/D.
Using the estimate (10.6) for the diffusion coefficient, we find that 7, ~
mo(L/A)?, where 7, ~ A/v is a typical time between successive collisions.
The condition (10.1) leads to 7, > r,, which is the identifying feature
allowing us to consider this process as time-independent.

To further study the diffusion of test particles, we introduce the probabil-
ity W(r, 1) that a test particle is at point r at moment ¢. Assuming this particle
to be located at the spatial origin at time zero, the probability will be
spherically symmetrical. The normalization condition is

[ W(r,0)d4mrtdr=1. (10.8)
0

The probability W satisfies equation (10.7), which in the spherically symmet-
rical case takes the form

oW D 9?3
—= — —(rW).
at r or-

To find mean values for the diffusion parameters, we multiply this equation
by 4mr*dr and integrate the result over all r. The left-hand side of the
equation yields

oW = d_.
f dart dr— = —f PWamrtdr= —r?,
0 Jat 0 dt
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where r? is the mean square of the distance from the origin. Integrating twice
by parts and using the normalization condition (10.8), we transform the
right-hand side of the equation into

o0 1 62 o (7
4497 _ 2. 7
Dfo 4mr drr arz(rW) 3Df0 4mr drar(rW)

6D[°°W4m2dr - 6D.
0

The resulting equation is dr’= 6Ddr. Since at zero time the particle is
located at the origin, the solution of this equation has the form

r? = 6Dr. (10.9)

Because the motion in different directions is independent and has a random
character, it follows from this that

X2=y2=22=2Dr. (10.10)

The solution of Eq. (10.7) can be obtained from the normal distribution
(2.41), which is appropriate for this process. Diffusion consists of random
displacements of a particle, and the result of many collisions of this particle
with its neighbors fits the general concept of the normal distribution. In the
spherically symmetric case we have

W(r,t) =w(x,)w(y,t)w(z,t),
and substituting A = {x?) = 2Dt in Eq. (2.39), we obtain

-1,2 *”
w(x,t) = (4wDrt) exp (-— 4—Dt) .

for each w-function. This yields

,
W(r,t) = (4nDt) " exp (— (10.11)

2
m)-
10.3 DIFFUSION OF ELECTRONS IN GASES

We can establish the electron diffusion coefficient in a weakly ionized gas

when it is determined by Eq. (10.3): j, = —D,VN,. Then the Boltzmann
kinetic equation has the form

v Vf = L.(f),
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where the electron distribution function in accordance with the expansion
9.23)is f = fy(v) + v,f(v), and the x-axis is in the direction of the gradient
of the electron number density. Taking into account the property that
f~ N,, we have Vf = fVN,/N,. Then Eq. (9.25) yields

0, fVN./N, = = vu,fy,
or
fi=~fVN./(vN,).
The electron flux is then given by

VNefuffO dv
VN,

e

J. fvfdv= fuffl dv =~

i

— VNS v/v),

where angle brackets mean averaging over the electron distribution function.
Comparing this formula with Eq. (10.3), we find that the electron diffusion
coefficient is

UZ
D, = <§> (10.12)

Equation (10.12) is correct only for transverse diffusion, because only in this
case can one separate corrections to the spherical electron distribution
function due to the electric field and due to the gradient of the electron
number density.

We now determine the coefficient for transverse diffusion of electrons in a
strong magnetic field if the directions of the electric and magnetic fields
coincide. This corresponds to the condition w, > v, where w, = eH/(m,c)
is the electron cyclotron frequency. The projection of the electron trajectory on
a plane perpendicular to the field consists of circles whose centers and radii
vary after each collision. The diffusion coefficient, by its definition, is
D | = {x?)/t, where {x?) is the mean square of the displacement for a time
t in the direction x perpendicular to the field. We have x — x, = r cos wyt,
where x, is the x-coordinate of the center of the electron’s rotational motion,
and ry = v,/wy is the Larmor radius, so that v, is the electron velocity in
the direction perpendicular to the field, and w, is the electron cyclotron
frequency. From this it follows that

(x?) = n<(x - x0)2> = nup:/(2wf,),
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where n is the number of collisions. Since t = n /v, where v is the frequency
of electron-atom collisions, we obtain

upzv v
DJ. = 2 3 = 3—2 , wH > v,
Wy Wy

where angular brackets mean averaging over electron velocities. Combining
this result with Eq. (10.12), we find that the transverse diffusion coefficient
for electrons in a gas, moving perpendicular to electric and magnetic fields, is

1 vl
D, = §<—> (10.13)

2 2
wy v

10.4 THE EINSTEIN RELATION

If a particle is subjected to an external field while traveling in a vacuum, it is
uniformly accelerated. If this particle travels in a gas, collision with gas
particles creates a frictional force, and the mean velocity of the particle in
the gas is established both by the external field and by the interactions with
other particles. The proportionality coefficient between the particle mean
velocity w and the force F acting on the particle from an external field is
called the particle mobility. Thus the definition of the mobility b of a particle
is

w = bF. (10.14)

We now assume that the test particles in a gas are in thermodynamic
equilibrium with the gas while subjected to the external field. According to
the Boltzmann formula (2.9), the distribution for the number density of the
test particles is N = Nyexp(—U/T), where U is the potential due to the
external field, and T is the temperature of the gas. The diffusive flux of
the test particles according to Eq. (10.3) is j = ~DVN = DFN/T, where
F = -~ VU is the force acting on the test particle. Because thermodynamic
equilibrium exists, the diffusion flux is compensated by the hydrodynamic
particle flux, j = wN = bFN. Equating these fluxes, we find that the kinetic
coefficients are related as

b=D/T. (10.15)

This expression is known as the Einstein relation. It is valid for small fields
that do not disturb the thermodynamic equilibrium between the test and gas
particles. From Egs. (10.15) and (10.6), we can estimate the particle mobility
to be

1

b~ ———. 10.16
NovmT ( )
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10.5 HEAT TRANSPORT

Heat transport can be treated in a manner analogous to that employed for
particle transport. The heat flux is defined as

muv?
= fv—fdv, (10.17)

where f is the velocity distribution function of the particles, and the relation
between the heat flux and the temperature is given by Eq. (10.4). For
estimation of the thermal conductivity coefficient, we use the same procedure
as in the case of the diffusion coefficient. Take the heat flux through a given
point as a difference of the fluxes in opposite directions, and express the
difference of the heat fluxes in terms of the difference of temperatures. From
Eq. (10.17), the heat flux can be estimated to be g ~ NvAT because the
energies of particles reaching this point from opposite sides are different.
Because only particles located within a distance of about A reach the given
point without collisions, we have AT ~ AVT. Substituting this in the equation
for the heat flux and comparing the result with Eq. (10.4), we find that our
estimate for the thermal conductivity coefficient is

NoA ~ = il 10.18
K~ NOA~ =~ e (10.18)

The thermal conductivity coefficient is independent of the particle number
density. An increase in the particle number density leads to an increase in
the number of particles that transfer heat, but this then causes a decrease in
the distance of this transport. These two effects cancel.

Our next step is to derive the heat transport equation for a gas where
thermal conductivity supplies the mechanism. Denote by € the mean energy
of a gas particle, and for simplicity consider a single-component gas. Assum-
ing there are no sources and sinks for heat, we obtain a heat equation exactly
analogous to the continuity equation (9.5) for the number density of particles,
namely

J
E(EN) + divg = 0.

We take the gas to be contained in a fixed volume. With d2/6T = c, as the
heat capacity per gas particle at a constant pressure, the above equation
takes the form

oT K
= +w-VI'= — AT, (10.19)
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where w is the mean velocity of the particles, and where we use the
continuity equation (9.5) for N /3t and the expression (10.4) for the heat
flux. For a motionless gas this equation is analogous to the diffusion equation
(10.7), and its solution can be obtained by analogy with Eq. (10.12).

10.6 THERMAL CONDUCTIVITY DUE TO INTERNAL DEGREES
OF FREEDOM

An additional channel of heat transport arises from the energy transport
associated with internal degrees of freedom. Excited atoms or molecules that
move through a region with a relatively low temperature can transfer their
excitation energy to the gas, and successive transfers of this nature amount to
the transport of energy. The inverse process can also take place, in which
ground-state atoms or molecules pass through a region with a relatively high
temperature, are excited in this region, and then transport this excitation
energy to other regions in the gas. This mechanism of heat transport is
significant if a typical distance over which excited and nonexcited atoms
reach equilibrium is small as compared to a length typifying the size of the
system.
The heat flux can be represented as a sum of two terms

q=—«kVT - kVT,

where «, is the thermal conductivity coefficient due to the transport of
translational energy, while the second term arises from transport of energy in
the internal degrees of freedom. The thermal conductivity coefficient is then
just the sum of these two terms, or

+ K;

K = K i

(10.20)

1

We shall now analyze the second term.

The internal state of the gas particle is denoted by the subscript i. Because
of the presence of a temperature gradient, the number density of particles in
this state is not constant in space, and the diffusion flux given by

IN;
Ji= —DVN,= -D,—

vT
aT

occurs. This leads to the heat flux
ON,
q= Zsiji == ZsiDi_’VT’
i i oT

where ¢; is the excitation energy of the ith state. Assuming the diffusion
coefficient to be the same for excited and nonexcited particles, the thermal
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conductivity coefficient due to internal degrees of freedom is
oN, a a
= L&D— =D—Y &N, =D—(&N) = Dc,, (10.21
K ;61 laT aTIZSI i aT(S ) Cp ( )

where € = ¥,¢,N,;/N is the mean excitation energy of the particles, N = ¥, N,
is the total number density, and c, = dg/JT is the heat capacity per
particle. Using the estimates (10.6) and (10.18) for the diffusion coefficient
and the thermal conductivity coefficient, one can conclude that «; ~ «, if the
excitation energy of internal states is of the order of the thermal energy of
the particle.

Another example of this mechanism for thermal conductivity occurs when
a dissociated gas undergoes recombination upon entering a cold region. We
examine the example of a gas that consists of atoms coexisting in thermody-
namic equilibrium with a small admixture of diatomic molecules representing
the bound system of these atoms. The dissociation and recombination pro-
ceed in accordance with the simple scheme

A+Ao A,

The number densities of atoms (N,) and molecules (N,,) are connected by
the Saha formula (2.17), so that N;?/N, = F(T)exp(—D/T), where D is the
dissociation energy and F(T) has a temperature dependence that is weak
compared to exponential dependence. Because N, > N and D > T, we
have dN,,/dT = (D/T?)N,, and from Eq. (10.21) it follows that

D 2
;== D,N,, 10.22
where D,, is the diffusion coefficient of molecules in an atomic gas. Compar-
ing this expression with the thermal conductivity coefficient (10.18) due to
translational heat transport, we have

il (D Mo 10.23
K ) N, (1023)

a

T

1

In the regime we have been treating, we have the inequality N, > N, , while
D > T. Therefore the ratio (10.23) can be about unity for low concentrations
of molecules in the gas. Note that these results are valid if the dissociation
equilibrium in the gas is reestablished over distances sufficiently short that
only small variations in the temperature take place.

10.7 THERMAL CAPACITY OF MOLECULES

Equation (10.19) for heat transfer allows us to obtain expressions for thermal
capacities. This equation refers to a gas contained within a fixed volume. If
the process proceeds in a small part of a large volume of gas, it is necessary
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to replace the thermal capacity at constant volume, ¢, in Eq. (10.19) by the
thermal capacity at constant pressure, c,,. It is convenient to rewrite equation
(10.19) in the form

oT
= +w-VT = AT, (10.24)
where y = k/(c, N) is the thermal diffusivity coefficient.

To find the connection between the thermal capacities ¢, and ¢ s let the
temperature of an element of gas containing n molecules vary by d7. Then
the energy variation of this gas element is dE = nc, dT. This energy change
can also be stated as dE = nc,, dT + pdV, where p is the gas pressure and V
is the volume. The equation of state (9.14), p = Tn/V, allows us to rewrite
the second energy-change relation as dE = nc, dT + ndT. Comparing the
two expressions for dE yields the result

¢, =c,+ L (10.25)

The thermal capacity ¢, of a molecule can be written as the sum of terms
due to different degrees of freedom, so that

Cy = Clr + Cro + Cyib» (1026)

where the thermal capacities ¢, c¢,,, and c, correspond to translational,
rotational, and vibrational degrees of freedom. Because the mean kinetic
energy of particles in thermal equilibrium is 37/2, we have ¢, = 3. Accord-
ing to Eq. (2.13), the mean excitation energy of rotational states is 7 for a
diatomic molecule. This yields c,, =1 for B> T (B is the rotational
constant) for a diatomic molecule. In the case of polyatomic molecules, there
are three rotational degrees of freedom instead of two for a diatomic
molecule. Hence, the rotational thermal capacity of polyatomic molecules is 3
if the thermal energy is much greater than a rotational excitation energy.
This condition is satisfied at room temperature for rotational degrees of
freedom of most molecules, but can be violated for the vibrational degrees of
freedom. Therefore, we determine the vibrational thermal capacity by any
available relation between the excitation energy for the first vibrational level
and a thermal energy of the molecule.
Using the expression

ho ho

o= +
Evib 2 exp(hw/T) ~ 1

for the average excitation energy of the harmonic oscillator, where w is the
frequency of the oscillator, we find that the vibrational thermal capacity
corresponding to a given vibration is

de (ﬁw)2 exp(—fhw/T)
Cyp = 3T \' T [1-—exp(“ﬁw/T)]2.

(10.27)
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This expression yields c,;, = 1 in the classical limit Aw < T. For the
opposite limit fiw > T, the vibrational thermal capacity is exponentially
small.

The above analysis yields

Cy=13+n,4/2+cu (10.28)

for the thermal capacity of a molecule, where n,,, is the number of rotational
degrees of freedom of the molecules, and the vibrational thermal capacity is
a sum of individual vibrations for which Eq. (10.27) can be used. Note that
the analysis uses the assumption of thermodynamic equilibrium among differ-
ent degrees of freedom.

10.8 MOMENTUM TRANSPORT

Transport of momentum takes place in a moving gas such that the mean
velocity of the gas particles varies in the direction perpendicular to the mean
velocity. Particle transport then leads to an exchange of particle momenta
between gas elements with different average velocities. This creates a fric-
tional force that slows those gas elements with a higher velocity and acceler-
ates those having smaller velocities. We can estimate the value of the
viscosity coefficient by analogy with the procedures employed for diffusion
and thermal conductivity coefficients. The force acting per unit area as a
result of the momentum transport is F ~ vm Aw,, where Nu is the particle
flux, and m Aw, is the difference of the mean momentum carried by particles
moving in opposite directions at a given point. Since particles reaching this
point without collision are located at distances from it of the order of the
mean free path A, we have m Aw ~ mA dw,/dz. Hence the force acting per
unit area is F ~ NomA dw,/dz. Comparing this with Eq. (10.5), and using
(T/m)'/? instead of v and (No)™! instead of A, we obtain the estimate

VmT
n~— (10.29)
ag

for the viscosity coefficient 7. The viscosity coefficient is found to be
independent of the particle number density. As was true for the thermal
conductivity coefficient, this independence comes from the compensation of
opposite effects occurring with the momentum transport. The number of
momentum carriers is proportional to the number density of atoms, while a
typical transport distance is inversely proportional to it. The effects offset
each other.

10.9 THE NAVIER-STOKES EQUATION

We now derive the equation for momentum transport in a viscous gas based
on Eq. (9.8). The expression for the pressure tensor must take the gas
viscosity into account. From Eq. (10.5), the term due to gas viscosity has the
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form P, = —mndw,/dz. Using the conventions adopted above, the only
nonzero component of the mean velocity is directed along the x-axis, and the
mean velocity varies in the z-direction.

Because the pressure tensor is symmetrical, a general expression for it
takes the form

ow ow ow
e Ly
o'*xB ax o'*xB

o

Ply= -1 (10.30)

The summation convention is assumed here, in which a repeated subscript in
any given term is to be summed over all values of that subscript. The factor a
can be found as follows. The forces of viscous friction in a gas are due to the
fact that neighboring gas layers move with different velocities. If the gas
could be decelerated as a whole, this friction mechanism would have no
effect and the force due to the gas viscosity would vanish. Hence, the trace of
the pressure tensor is zero. This yields a = — 2, and the viscosity term in the
pressure tensor can be written in the form

ow, owg 2 ow,
+ = = 58—
dxg dx, 3 dxg

Pig=—1 (10.31)

With the viscosity part of the pressure tensor taken into account, Eq. (9.8)
takes the form

oW Vp n n F
— +t (W Vw=~— + —Aw+ —Vw + —. (10.32)
at p p 3p m

This equation describes momentum transport, and is called the Navier—Stokes
equation.

To determine the force acting on a spherical particle of radius R moving
in a gas with a velocity w, we assume that the particle radius is large
compared to the mean free path, R > A, and that the velocity w is not very
high, so that the resistive force arises from viscosity effects. The total resistive
force is proportional to the particle area, so Eq. (10.5) gives F ~ nRw. A
more precise determination of the numerical coefficient gives the relation

F = 6mmRw (10.33)

for the force. This expression is known as the Stokes formula.

10.10 THERMAL DIFFUSION OF ELECTRONS

We have examined the principal transport phenomena in gases and plasmas
that are caused by gradients of concentration, temperature, and mean flow
velocity and by an external electric field. In addition to the fluxes we have



THERMAL DIFFUSION OF ELECTRONS 159

already considered, these same gradients and fields can create cross-fluxes.
Below we consider the simplest of these transport phenomena, namely, the
electron flux due to a gradient of the electron temperature. This flux is

j= -D;VInT,, (10.34)

with this expression serving to define the thermodiffusion coefficient D. We
shall calculate this coefficient with the condition that the electron number
density should be sufficiently high [condition (9.40)] to allow us to introduce
the electron temperature T,.

The Boltzmann kinetic equation for electrons in this case has the form

v-Vf=1,f). (10.35)

The temperature gradient leads to a nonsymmetric part of the electron
distribution function, which can be written in the form of Eq. (9.23), that is
to say

f=ro(v) + v fi(v),

where f,(v) is the Maxwell distribution function for the electrons, and the
x-axis is directed along the temperature gradient. Substituting this in Eq.
(10.35), and using Eq. (9.25) for the collision integral for the nonsymmetric
part of the distribution function, we obtain
dfy
U.rE = - Vuxfl’ (1036)

where v is the frequency of electron—atom elastic collisions.

We now calculate the electron flux created by the nonsymmetric part of
the distribution function. Using the fact that the flux is directed along the
x-axis, we have

_ , 1 0% af, d v?
jo= fofidv= [vif dv= -3/ —E(Ne<5> :

where the angle brackets mean averaging over electron velocities. Since the
x-dependence is contained in the electron temperature, we obtain

j VTd N v
Jr = edY;, e\ 3, :

Comparing this with Eq. (10.35), we find the expression for the thermodiffu-
sion coefficient to be

D TdNU2 TdND 10.37
T'—ed_Teeﬁ—ed_Te(e)v (10.37)

where D is the electron diffusion coefficient given in Eq. (10.13).
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Since the electron pressure p, = N,T, is constant, this expression can be
written as

T,

e

d (D
Dy = NeTf—(—). (10.38)

e

In particular, if v = const, this equation gives Dy = 0. Using the dependence
v ~ D", we obtain

D; = —nN,D. (10.39)

This means that the direction of the electron flux with respect to the
temperature gradient depends on the sign of n.

10.11 ELECTRON THERMAL CONDUCTIVITY

Because of the small mass of electrons, their transport can give an important
contribution to the thermal conductivity of a weakly ionized gas. We shall
calculate the thermal conductivity coefficient of the electrons. For this
purpose we represent the electron distribution function as

f=f(v) + (v-VInT,)f,(v), (10.40)

and the kinetic equation (10.35) has the form

2
m,u

0

5
— Z v VT, = L,(f).
o7 2)v = La(f)

Here we take into account that the x-dependence of the electron distribution
function is due to T,, and that the electron pressure p, = N,T, is constant in
space. From this, and from 1,,(v,f|) = —vu, f, obtained from Eq. (9.35), we
find

h

14

fi= 2T, )

m v* 5 )

for the nonsymmetric part of the distribution function.
The electron heat flux is

2

m, v? muv
_ e _ Gl
q, = f > v fdv f U VInT,f, dv.

Introducing the thermal conductivity coefficient of electrons by the relation

q,= —«, VT,, (10.41)
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we obtain

v? m?
K, = N — =

¢ Te\3p 2T,

mup? 5 |
a7 "3 ) (10.42)

where the angle brackets mean averaging over the electron distribution
function.

Assuming v ~ v", that is, taking v(v) = v,z"/?, where z = m?/(Q2T,),
Eq. (10.42) gives

! T"N"(l z r(7_") 10.43
%= 3V vom, 2) 2/ (10-43)
In particular, if » = const, the result is
TN, 10.43
K, = vgm. (10.43a)

If n =1, that is, if v = v/A (where A is the mean free path), we are led to

2 N, A 2T, 10.43b
Ke_3‘/; e me' ( . )

To determine the contribution of the electron thermal conductivity to the
total thermal conductivity coefficient, it is necessary to connect the gradients
of the electron and atomic temperatures 7, and 7. We can explore this
problem in the case when the increase of the electron temperature is
determined by an external electric field, and the connection between the
electron and atomic temperatures is given by Eq. (9.44). If v ~ v", this
formula gives

vT
VI, = - (10.44)
1+n~-nT/T,

When we have the strong inequality 7, > T, then the total thermal conduc-
tivity coefficient is

VT, K, 10.45
=K, + K — =K, + )
K=l T gy =T T ( )

where k, is the thermal conductivity coefficient of the atomic gas. Using the
estimate (10.18) for the atom thermal conductivity coefficient, one can see
that the electron thermal conductivity can give a significant contribution to
the total value because of the small mass of the electron and the high
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electron temperature. We assume that the condition opposite to that ex-
pressed in Eq. (9.40) allows us to introduce the electron temperature.

The peculiarity of the electron thermal conductivity is that cross fluxes can
be essential in this case. We consider the electron thermal conductivity of a
weakly ionized gas in an external electric field. Then the fluxes are

i=NKE-DVInT,,

(10.46)
q= —«NVT, + aeE.

We treat the case where displacement of the electrons as a whole does not
violate plasma quasineutrality. This corresponds to plasma regions far from
electrodes and walls. Then the mobility K in Eq. (10.46) is the electron
mobility, and one can neglect ion mobility including the ambipolar diffusion.
The expression for the electron thermodiffusion coefficient is given by
Eq. (10.39), and Eq. (10.46) gives the thermal conductivity coefficient. Next
we determine the coefficient « by the standard approach of expanding
Eq. (9.23) for the electron distribution function.Then Eq. (9.23) yields f, =
eEf,/(vT,), and the coefficient « is

m,N, [ v 4T,N, (7 n
a S —_— = _—F — — —)’
67, v 3\/;mev0 2 2

where we take

U n
. V°( J2T./m, ) '

For n = 0 this gives

5T,N,
o= (10.47a)

2
2m,v

and for n = 1, when v = v/A, it gives

2T A 2AN, 10.47b
*= m, 3m  3up’ (10.470)

where vy = /8T,/mm, is the mean electron velocity.
The relationships (10.46) together with the corresponding expressions for

the kinetic coefficients allow us to determine the electron heat flux under
different conditions in the plasma. We now evaluate the effective thermal
conductivity coefficient in the direction perpendicular to an external electric
field E. If the plasma is placed in a metallic enclosure, there is no transverse
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electric field, so E = 0 and Eq. (10.41) follows from Eq. (10.44). If the walls
are dielectric, we have j = 0. This corresponds to the regime of ambipolar
diffusion where the electrons travel together with the ions. On the scale
considered, this gives j = 0, meaning that an electric field of strength
E = D;VInT,/(N,K) arises. We represent the heat flux in the form

q= —CkNVT,, (10.48)

where the coefficient is C = 1 — aDre/(x,T,N,K). Using Eq. (10.39) for
the electron thermodiffusion coefficient and the Einstein relation (10.15), we
obtain C = 1 + an/k,.

On the basis of Egs. (10.43), (10.47), and (10.48), we have

1+n/2
C= —. (10.49)
1—-n/2

This shows that the effective thermal conductivity coefficient for electrons in
the case of both metallic and dielectric walls depends on n. For n = 0 its
value is the same in both cases. For n = 1 it is greater by a factor of 3 in the
second case as compared to the first.



CHAPTER 11

CHARGED-PARTICLE TRANSPORT
IN GASES

11.1 MOBILITY OF CHARGED PARTICLES

The mobility K of a charged particle is defined as the ratio of its drift
velocity w to the electric field strength E, or

K=w/E. (11.1)
This differs from the definition of the mobility b of a neutral particle [Eq.
(10.14)], which is the ratio of the drift velocity to the force acting on the
particle from an external field. For electrons and singly charged ions we have

b=K/e. (11.2)
Correspondingly, the Einstein relation (10.15) has the form

K=eD/T (11.3)

for charged particles, where D is the diffusion coefficient. Using the estimate
(10.6) for the particle diffusion coefficient, we obtain the estimate

K~e(uT) "*(No)™' (11.4)
for the mobility of charged particles, where w is the reduced mass of the

charged and gas particles, and o is their elastic collision cross section.

164
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11.2 MOBILITY OF IONS IN A FOREIGN GAS

Equation (11.4) leads to an estimate for the mobility of ions. If the ions and
gas atoms are not of the same species, ion—atom scattering is determined
principally by the polarization interaction between them, and their scattering
cross section is close to that of polarization capture. From Egs. (4.13), (9.22),
and (11.1) we obtain

K= (2aN)"'(pu) " (11.5)

for the ion mobility, where B is the polarizability of the atom, and N is the
number density of the gas atoms. Elastic scattering in jon—atom collisions
exceeds the effective capture cross section by about 10%. Hence, the mobility
in the polarization ion—atom interaction is about 10% less than is given in
Eq. (11.5).

The ion drift velocity is proportional to the electric field strength E for
small fields, as given in Eq. (11.1). If the ion and atom masses are similar in
magnitude, the condition that the electric field strength is small has the form

eEA < T, (11.6)

where A is the mean free path of ions. This condition implies that the energy
that the ion takes from the electric field between subsequent collisions is
small compared to its thermal energy. As a result, the ion drift velocity
is small compared to a typical ion thermal velocity in this case.

If the condition (11.6) is satisfied, the ion distribution function is almost
Maxwellian, and therefore can be written in the form

f(v) = e(0)[1 + v ¥ (v)], (11.7)

where ¢(v) is the Maxwell distribution function of the ion, the electric field
is along the x-axis, and the function (v) can be determined by solving the
ion's kinetic equation.

We use the approximation that ¢ is independent of the ion velocity. Then
the parameter  can be determined by the integral relation (9.21) for the ion
distribution function, and furthermore Eq. (11.7) yields the ion drift velocity
as w = y{v>)/3 = ¢ T/m, where m is the ion mass. The above approxima-
tion is called the first Chapman-Enskog approximation. It yields

3evw
K =—F— (11.8)

8NG/2Th

for the ion mobility, where u is the reduced mass of the ion—atom system,
and the mean cross section o corresponds to an average of the diffusion
cross section o *(v) of the ion—atom scattering, with the averaging done over
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the Maxwellian ion velocity distribution. This average has the form

g’

F(T) = ~ [“o*(x)e~x dv 11.9
o( )——j(;a(x)e x*dx, X =2 (11.9)

2

where g is the relative velocity of the ion—atom collision.

The Chapman—Enskog approximation is a general method for calculating
the kinetic coefficients. It is based on an expansion in powers of the reduced
velocity for the correction to the Maxwell distribution function, if this
correction is induced by small field gradients in an equilibrium gas. Even the
first Chapman—Enskog approximation is cumbersome, so we did not use this
method for the earlier analysis of transport phenomena; but in the present
case of ion transport, this approximation simplifies due to the integral
relation (9.21). By employing the Einstein relation (11.3), one can find from
Eq. (11.8) the ion diffusion coefficient, and this can also be applied to atoms
in the limiting case e — 0. Thus, we have the expression

3vwT
D = —F (11.10)

8NGY2u

for the diffusion coefficient for both neutral and charged atoms in the first
Chapman—Enskog approximation, where the average cross section & is given
by Eq. (11.9).

11.3 MOBILITY OF IONS IN THE PARENT GAS
Resonant charge exchange is described by the scheme
A+A"> AT+ A. (11.11)

This process is of importance for movement of ions within an atomic gas of
the same species. At thermal energies, the cross section for the ion—atom
resonant charge transfer is several times larger than a gas-kinetic cross
section (see Appendices 6 and 9). The cross section for resonant charge
exchange is insensitive to increase of the ion energy, while the cross section
for elastic scattering declines strongly with an increase of the ion energy.
Hence, for subthermal ion energies, one can ignore elastic ion—atom scatter-
ing compared to charge exchange. Figure 11.1 illustrates the exchange
character of ion scattering in the parent gas. Ion motion of this type due to
resonant change exchange is called the Sena effect. The scattering results in a
transfer of charge from one atomic core to the other, and hence the charge
exchange cross section characterizes the ion mobility. As seen in the center-
of-mass frame, this process leads to effective ion scattering by the angle
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lon lon

lon scattering
angle

Before After
colllsion collision
Figure 11.1 [llustration of the resonant charge exchange of an ion and atom without
elastic scattering (Sena effect).

¥ = 7. Correspondingly, the diffusion cross section is
o-*=f(1—cos19)d0'=2o;es, (11.12)

where g, is the cross section of the resonant charge-exchange process.

Then, assuming o, to be independent of the collision velocity, Eq. (11.8)
gives

eV

K =—r—, 11.13
" 16No, VTm ( )

where m stands for the mass of either the ion or the atom.

With large electric fields, the condition (11.6) is reversed. In this case the
ion drift velocity is much greater than its thermal velocity, and because of the
absence of elastic scattering, ion velocities in the field direction are much
larger than in other directions. The sequence of events in a strong electric
field is that the ion accelerates under the action of the field, stops as a result
of the charge exchange, and then repeats this process.

The probability P(¢) that the ion does not participate in charge exchange
during time ¢ after the last exchange event satisfies the equation

dpP

dr
where v = Nu,o,,. Its solution is P(t) = exp(— [ vdr'). The equation of
motion for the ion, mdv, /dt = eE, relates the ion velocity to the time after
the last collision by the expression v, = eEt/m, so that P(¢) is the velocity
distribution function for the ions. Assuming the cross section of the resonant
charge transfer process o,., to be independent of the collision velocity, the

—vP. (11.14)
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distribution function is

my?

2¢eEA

f(v) =Cexp(— ), v, >0, (11.15)

where C is a normalization factor, and the mean free path is A = 1/(No,).
The ion drift velocity and the mean ion energy are

2¢eEA
w=(n) =y =,

_ <muf> eEA
g = = —.

(11.16)

2 2
These results are valid under the condition that
eEA> T, (11.17)

which is opposite to that of Eq. (11.6). It can be seen that the ion drift
velocity is much greater than its thermal velocity, and the average ion energy
is large compared to the thermal energy T. Furthermore, if the ion mobility
is defined by Eq. (11.1), it depends on the electric field strength as E~'/2.

11.4 ENERGETIC TOWNSEND COEFFICIENT

When electrons travel in a gas in external fields, their velocity distribution
function is nearly spherically symmetric because of the nature of scattering of
a light particle by a heavy one. The electron distribution function for a
constant electric field was found in Chapter 9, and according to Egs. (9.23)
and (9.33) it has the form

E Ux dfO
m,v v dv’

f(v) = fo(v) -

This gives the electron drift velocity

o2 » 3
w, =(v,) = —EE'[ U_xilfﬂ47'ru2du=£<1 d(%)> (11.18)

m,Jo vv dv 3m, \ v* dv

Here the angle brackets mean averaging over the spherical electron velocity
distribution function. In particular, if the collision frequency v does not
depend on the collision velocity, Eq. (11.18) gives

ek

w, = . (11.19)
m,v

In the course of electron motion in a gas, the electron energy can vary
over a wide range after many collisions, during which an electron changes its
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direction of motion many times. The electron motion at a given moment,
when the electron velocity is v, is characterized by the diffusion coefficient
D = v?/(3v) and the drift velocity

< (2)

w = —
¢ 3muptdvl v
We introduce the energetic Townsend coefficient as

eED | eD | 11.20
T " T TR (11.20)

where D | is the transverse diffusion coefficient of electrons, and K is their
mobility. For thermal electrons with a Maxwellian distribution, Eq. (11.20)
gives 7 = 1 on the basis of the Einstein relation (10.14). If we introduce the
electron temperature, so that we have the Maxwell energy distribution with
the electron temperature T, it follows from Eq. (11.20) that

= -
Thus, the energetic Townsend coefficient that can be constructed from measur-
ing electron parameters characterizes the average electron energy.
The general expression for the energetic Townsend coefficient (11.20), as
it follows from Eqgs. (10.13) and (11.18), has the form

mv? 1 d o*\)"
n=< - >(T<FET>) . (11.21)

If the electron—atom collision frequency » is independent of the electron
velocity, this equation gives

ey 11.22
n=\57 ) (11.22)
In this case the energetic Townsend coefficient is the ratio of the mean
electron energy to the mean energy of the atom. Such a relation holds both
for the case v = const and for the Maxwell distribution function of electrons.
If the electron distribution function is determined by electron—atom colli-
sions and is given by Eq. (9.34), then Eq. (11.20) has the form

B W /vy
(/w1 + Mu2/3T))

n
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where u = eE/(m,v). In particular, if the electric field is strong and the
electron—atom cross section does not depend on the electron velocity (v ~ v),
it follows from Eq. (11.22) that

1.14 .’
This demonstrates the extent to which the energetic Townsend coefficient is
the ratio between the average electron and atom energies. Thus, the ener-

getic Townsend coefficient is a convenient parameter characterizing the
mean electron energy with respect to that of the atom.

11.5 CONDUCTIVITY OF A WEAKLY IONIZED GAS

The gas conductivity 3 is defined as the proportionality factor between the
electric current density and the electric field strength E in Ohm’slaw j = 2E.
The electric current is a sum of two components: the current due to the
electrons, and that due to the ions. The total current is thus

j= —eNw, + eNw,, (11.23)

where N, and N, are the electron and ion number densities, and w, and w;
are the electron and ion drift velocities. Expressing the drift velocity of a
charged particle through its mobility by Eq. (11.1), the conductivity of a

quasineutral ionized gas is
2 =e(K,+K), (11.24)

where K, and K, are the electron and ion mobilities. Using the estimate
(11.4) for the mobility of a charged particle, one can see that electrons give
the primary contribution to the gas conductivity. Furthermore, Egs. (11.4)
and (11.24) yield the estimate

X ~N,eX(m,T,)""*(No,) ', (11.25)

for the gas conductivity, where g,, is a typical electron—atom scattering cross
section.

10.6 CONDUCTIVITY OF A STRONGLY IONIZED PLASMA

The conductivity of a weakly ionized gas is governed by electron-atom
collisions, while in a strongly ionized plasma electron—ion collisions predomi-
nate over electron—atom collisions. Note that electron—-electron collisions do
not change the total electron momentum and have no influence on the
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plasma conductivity. The electron-ion elastic scattering cross section is much
larger than the electron-atom cross section, and so the term “strongly
jonized plasma” can refer to a plasma with only slight ionization, but with a
conductivity much larger than that of a weakly ionized plasma.

The drift velocity of the electrons is given by Eq. (11.18). Then Eq. (11.24)
leads to the plasma conductivity

Ne*[1 d (v

where v = Nwvo*, and the averaging is done over the electron distribution
function. Because of the plasma’s quasineutrality (N, = N,), its conductivity
does not depend on the electron number density. The diffusion cross section
for the Coulomb interaction between a colliding electron and ion is given by
Eq. (5.5), which has the form o* = (we*InA)/g?, where & is the electron
energy, the Coulomb logarithm is In A = In[e?/(ryT)], and r, is the
Debye-Hiickel radius. Using the Maxwell distribution function for the elec-
trons, the expression we finally obtain for the plasma conductivity is

25/2T3/2
€

This is known as the Spitzer formula.

11.7 AMBIPOLAR DIFFUSION

Violation of plasma quasineutrality creates strong electric fields within the
plasma. The fields between electrons and ions are associated with attractive
forces, tending to move them together. We consider a special regime of
plasma expansion in a gas wherein the electrons, being much lighter than the
ions, have a larger diffusion coefficient and move with higher velocity than
the ions. But separation of electrons and ions in a gas creates an electric field
that slows the electrons and accelerates the ions. This establishes a self-con-
sistent regime of plasma motion called ambipolar diffusion. We shall examine
this regime and establish the conditions necessary to achieve it.

To describe this regime of plasma evolution, we use expressions for the
electron flux j, and ion flux j; flux given by

j.= —DVN, — K,EN,,

11.28
ji = ~DYN, + K,EN;, (11:28)

where N, and N, are the number densities of electrons and ions respectively,
D, and D, are their diffusion coefficients, and K, and K, are their mobili-
ties. Because the electric field acts on electrons and ions in opposite direc-
tions, the field enters into the flux expressions with different signs. The
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electric field strength E is determined by Poisson’s equation
divE = 47e(N, — N,). (11.29)

Since a plasma converges to quasineutrality during evolution, the charge
difference is small: AN = |N, — N,| < N,. This gives N, = N; = N. Because
the plasma motion is self-consistent, we have j, = j;. Next, according to Egs.
(10.6) and (11.4) the kinetic coefficients of electrons are large compared to
those of ions. In order to satisfy to all these conditions, it is necessary to
require that the electron flux is zero (j, = 0) on the scale of electron
quantities. We recall the equality j, = j,, but DVN, > j, and eEK N, > j,
so in terms of the magnitudes of electron parameters, we conclude again that
J, = 0. From this it follows that

D, VN

E= - — 11.30
eK, N ( )

and we find the flux of charged particles to be

i=li=-

K.
D, + De?')VN = —DVN,

€

where D, is the coefficient of ambipolar diffusion. Thus the plasma evolution
has a diffusive character with a self-consistent diffusion coefficient. In partic-
ular, when electrons and ions exhibit the Maxwell velocity distribution, we
obtain

€

1 d 11.31
+ = :
= (1131)

D, =D,

da 1

with the help of the Einstein relation (11.3). In the regime we have been
examining, we find that a plasma expands with the speed of the ions rather
than that of the electrons.

We can state the condition necessary to be in this regime, taking into
account the quasineutrality of an expanding plasma, that is, when AN =
IN, = N,| < N holds true. From Eq. (11.29) we have AN ~ E/(4mel),
where L is a typical dimension of the plasma. Equation (11.30) together with
the Einstein relation (11.3) give E ~ T/(e’L), where for simplicity we
assume the electron and ion temperatures to be equal. Thus we have
AN ~ Nr3/L*. From this it follows that the criterion for the presence of the
ambipolar diffusion regime is the same as the plasma definition (3.8):
L > rp.
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11.8 ELECTROPHORESIS

A weakly ionized gas can be used to achieve the separation of isotopes and
elements in a mixture of gases, by making use of the different currents for
different types of charged atomic particles. As such an example, we consider
electrophoresis in a gas-discharge plasma. This phenomenon corresponds to
a partial separation of the components of the system. Suppose a gas in a
cylindrical tube consists of two components: a buffer gas (for example,
helium), and an admixture of easily ionized atoms (for example, mercury,
cadmium, zinc). The admixture atoms will give rise to an ionic component
because of the small ionization potentials. The number densities of the
components satisfy the inequalities

N> N, > N,

where N is the number density of the atoms of the buffer gas, N, is the
number density of admixture atoms, and N, is the number density of ions.

Because the ion current arises from the admixture ions, we have the
balance equation

dN,

a

-D
dx

+ wN, =0,

for the admixture, where D is the diffusion coefficient of the admixture
atoms in the buffer gas, w is the ion drift velocity, and the x-axis is directed
along the axis of the tube. Assuming the ion diffusion coefficient is such that
D, ~ D, and using the Einstein relation (10.15) for a typical size L =
(dIn N,/dx)~" responsible for the gradient of the admixture number density,
we find that

T
L~—.
ekc,

In this expression, ¢; = N,/N, is the degree of ionization of the admixture,
T is the temperature of atoms or ions, and E is the electric field strength.

This phenomenon causes a discharge plasma to be nonuniform, and the
glowing of this plasma due to radiation from the excited atoms of the
admixture is concentrated near the cathode. Electrophoresis is established
for a time 7 ~ L /(c;w) after switching on the discharge. In fact, in a region
near the anode, the number density of admixture atoms and ions decreases.
An increase of the rate constant of ionization is required, so that the electric
field strength in this region must be increased. Thus, electrophoresis can
change the parameters of a gas discharge.
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11.9 RECOMBINATION OF IONS IN DENSE GASES

The recombination of positive and negative ions in a dense gas is a three-body
process that satisfies a condition opposite to that of Eq. (5.21). Specifically,
we require

A <b, (11.32)

where b = e?/T is the critical radius and A is the mean free path of ions in a
gas. Under such circumstances, frequent collisions of the ions with gas
particles prevent them from approaching each other, and thus the typical
recombination time significantly exceeds the time required for the ions to
approach each other. If the distance between ions is R, each ion is subjected
to the field produced by the other ion, and the electric field strength is
E = e/R*. This field causes oppositely charged ions to move towards each
other with the velocity w = e(K,+ K_)/R?, where K, and K_ are the
mobilities of the positive and negative ions in the gas. This expression is valid
if R > A

To determine the frequency of decay of the positive ions due to recombi-
nation, imagine a sphere of radius R around the positive ion, and compute
the number of negative ions entering this sphere per unit time. This is given
by the product of the surface area of the sphere, 4mR?, and the negative
ion flux

N_w=N_e(K,+ K_)/R™
Thus, the balance equation for the number density of positive ions is

dN,
dt

= —N,N 4me(K,+K_).

Comparing this with the definition of the recombination coefficient, we find
this coefficient to be

a=dme(K,+K_). (11.33)

This relation is known as the Langevin formula.

The sequence of events in this process is that the ions approach under the
action of the Coulomb force, and collide with gas particles in the course of
this approach. The criterion (11.32) leads to the condition eEA < T, where
E is the electric field strength acting on one ion due to the other, if the
distance between them is of the order of the critical distance b. This means
that at distances of ion approach that give the primary contribution to the
recombination coefficient, the ions move in a weak electric field. That is, the
ion mobilities K, and K_ in Eq. (11.33) correspond to small fields consis-
tent with the condition (11.6). Because of Eq. (11.4), the recombination
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coefficient of ions at large gas density is inversely proportional to the number
density of gas atoms. In fact, an increase of the gas density leads to an
increase in the frictional force for ions that slows the approach of the ions.

11.10 GAS-DENSITY DEPENDENCE OF THE IONIC
RECOMBINATION COEFFICIENT

In Chapter 5 above and again here, we considered the recombination of
positive and negative ions at various gas densities. We can summarize the
results graphically. Figure 11.2 shows the qualitative dependence on the gas
density of the recombination coefficient for positive and negative ions. For
a low gas density (region 1), recombination is due to pairwise collisions of
ions, and the recombination coefficient is given by Eq. (5.9). The order-of-
magnitude estimate for the recombination coefficient is @, > #2/(m2 uT)"?,
if we set R, > a, in Eq. (5.9). Here, m, is the electron mass, u is the
reduced mass of the ions, and a, = #2/(m,e?) is the Bohr radius. Since the
recombination coefficient in region 2 is given by Eq. (5.20), we have
a, ~ [Cl(e®/T*) Be?/u)'/?, where B is the polarizability of the particle C,
[C] is its particle number density, and u is the reduced mass of the ion and
the particle C. The gas number density corresponding to transition from
region 1 to region 2 is of the order of
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[Cly ~ ao(T/e?)y "B 172.

ne . |~~~ =~~~ -~~~ ="~~~

I
I
I
I
I
I
I
I
I
In o, I
I
I
I
I
]

InN

A

In Ny In N,

Figure 11.2 The recombination coefficient « of positive and negative ions as a
function of gas density, denoted here as N.
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Figure 11.3 The recombination coefficient of positive and negative ions of air as a
function of pressure. The curve is an approximation to experimental data that are
shown by small circles.

Region 3 in Fig. 11.2 is described by the Langevin theory, and Eqs. (11.4)
and (11.33) give the order-of-magnitude estimate «; ~ e /([C]\/ﬁ’; ) for the
recombination coefficient in this region, if we assume that the polarization
interaction potential acts between the colliding ion and atom. The transition
between regions 2 and 3 is associated with the number density

T3/2
[C]Z ~ e3¢§ '

This number density corresponds to the largest recombination coefficient,
Qe ~ €™2T7%2 The relevant physical process is pairwise ion—ion re-
combination if the cross section corresponds to elastic scattering of particles
experiencing the Coulomb interaction. Thus, the maximum recombination
coefficient has the same order of magnitude as the elastic rate constant of
ions.

Typical values for the quantities indicated in Fig. 11.2 for ions produced in
air at room temperature can be cited: [C], ~ 107 cm ™3, [C], ~ 10% ¢m ?,
a, ~107° em?®/s, and «,,, ~ 107% cm®/s. Figure 11.3 shows measured rate
constants for recombination of positive and negative ions in air as a function
of pressure. The maximum of the recombination coefficient can be seen to
occur at atmospheric pressure.




CHAPTER 12

SMALL PARTICLES IN PLASMAS

12.1 PLASMAS WITH DISPERSED INCLUSIONS

The presence of particles in a plasma can alter its basic properties. For
example, in Chapter 2 we considered ionization equilibrium in a hot vapor,
with small metallic particles providing a source of free electrons. Small
particles in a plasma carry electric charge and thus influence the electric
properties of the plasma. They may act as a collector for electrons and ions,
so that the presence of small particles leads to decay of the plasma. In
addition, particles emit radiation in a hot vapor and can play a determining
role in the optical properties of a plasma. These problems will be considered
below.

Different names are used for small particles depending on their size, their
type, and the scientific area where they are studied. Small particles in the
atmosphere are usually called aerosols, a plasma containing small particles is
called a plasma with dispersed inclusions, sometimes small particles in a gas
are referred to as dust, and so on. In physics, small particles consisting of
from tens up to tens of thousands of atoms or molecules are called clusters.
Clusters are an intermediate state of matter between individual atoms and
atoms in bulk (or condensed matter), and their properties can differ from the
properties of condensed matter. In particular, even large clusters are charac-
terized by so-called magic numbers of atoms, which correspond to extremal
values of some parameters as a function of the size of the cluster. In other
words, some cluster parameters have local maxima or minima at particular
numbers of atoms in the cluster. At these special numbers of atoms, the
binding energy of a released atom, the cluster ionization potential, and the

177
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Figure 12.1 The specific surface energy of clusters with pairwise interaction of
atoms. Clusters have the face-centered cubic structure, and only nearest-neighbor
interactions occur. The specific surface energy is expressed in units of the dissociation
energy of the diatomic molecule.

cluster electron affinity are more than for clusters containing one more or
one less atom than the magic number.

The existence of magic numbers for clusters shows that clusters have
stable structures that correspond to extrema of cluster parameters, and these
parameters are nonmonotonic functions of the number of atoms in the
cluster. Despite this fact, bulk models of clusters are helpful in understanding
their properties. They allow one to describe the dependence of cluster
parameters on cluster size in an average sense. For example, the total
binding energy E of cluster atoms can be written as a function of the number
of cluster atoms n as

E(n) = gyn — A(n)n*”?, (12.1)

where g, is the binding energy per atom of a bulk system, and the function
A(n) is the specific surface energy, which approaches a constant at large n.
This is illustrated in Fig. 12.1, showing the behavior of A(n) for clusters of
face-centered cubic structure and with a short-range atomic interaction. The
function A(n) is nonmonotonic, and can deviate from its average value by
several percent for large clusters. This is a measure of the accuracy of the
expansion of the cluster energy (12.1) in a parameter that is small as a
consequence of the large number of atoms in the cluster.

Along with clusters, small particles of sizes larger than clusters may be
introduced into a plasma. Small particles in the atmosphere are usually called
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aerosols. Bearing in mind the qualitative character of the analysis of the
properties of clusters, aerosol particles, and small particles, we shall give
them a unified treatment in the following. That is, we make no distinctions
among these particles. For simplicity we assume each small particle to be
spherical. This corresponds to the liguid-drop model for the particle. Within
the framework of this model, we assume clusters or small particles to be like
a liquid drop of the same material, and the drop density p is taken to be the
same as the density of this liquid material in bulk. Then the number of atoms
n in this particle is

dr} rg \2
n= °p=(—°), (12.2)
3m rw

where r, is the particle radius, m is the atomic mass, and ry, = [3m /(47p)]'/?
is the Wigner—Seitz radius. The liquid-drop model allows one to analyze
electrical, electromagnetic, radiative, and other properties of these particles,
and also to ascertain the influence of small particles on the properties of a
plasma containing them. Such problems will be considered below.

12.2 POLARIZABILITY OF SMALL PARTICLES

We first determine the polarizability B of a spherical particle, defined as the
coefficient of proportionality between the dipole moment D of the particle
and the electric field E that induces it, as expressed by D = BE. The electric
field potential of the particle, evaluated at a point outside the particle, is

p=¢'—E-r,

where r is the distance from the particle center, and ¢' is the potential from
induced charges on the particle. Because there are no charges outside the
particle, the electric potential of the induced charges satisfies the Laplace
equation

Ay’ = 0.

Far from the particle the solution of this equation has the form ¢' =
—D - r/r3, so that outside the particle the electric potential is

¢=—-E-r- et r>rg, (12.3)

where r, is the particle radius.
The boundary condition on the particle surface has the form

do do
a;(rrTr”»ro) = 0_’—r(r7ro>r0), (12.4)
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where & is the dielectric constant of the particle. This relation is the
continuity condition for the electric field vector. The potential inside the
particle is induced by an external electric field and therefore has a finite
value. These conditions allow us to construct the scalar potential ¢ and the
vectors E and r in the general form

¢=—CE-r, r<rg.

The coefficient C can be obtained from the continuity condition for the
scalar potential at the particle surface and from the continuity condition
(12.4) for the electric field vector. Using Eq. (12.3) for the potential outside
the particle, we have

3e e—1
C= ,  B= ; (12.5)

where the value of the polarizability follows from the expression connecting
the induced dipole moment and the electric field strength. Equation (12.5)
for a metallic particle (£ > 1) yields

B=ri (12.6)

Equation (12.5) can be used for the particle polarizability in a variable field if
the field frequency is not large, as expressed by

w <3, (12.7)

where X is the conductivity of the particle material. In this case the
field inside the particle is readily established, and the polarizability can be
written as

olw) ~ 1, (12.8)

B(w) = mro‘

12.3 ABSORPTION CROSS SECTION FOR SMALL PARTICLES

The scattering and absorption of electromagnetic waves incident on a small
particle of dimension r, is characterized by a parameter r,/A, where A is the
wavelength. This parameter is normally very small, and the corresponding
cross sections are thus small compared to cross sections associated with
particle interactions. The small size of this parameter allows us to limit our
treatment to only the dipole interaction of an electromagnetic field with the
particle. We demonstrate the procedure by treating the absorption of a
monochromatic electromagnetic wave by a small particle. The interaction
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energy between the induced dipole moment D and the field of an electro-
magnetic wave is —E - D, where E is the electric field vector, and the power
absorbed by the particle is

P= —(E-dD/dt), (12.9)

where the angle brackets denote averaging over a time large compared to the
period of wave oscillations.
We take the electric field of the wave to be in the form

E = Eje'* + Efe '«

where w is the wave frequency. The specific flux of incident radiation
averaged over a time large compared to the period of oscillations is given by
the Poynting vector ¢{|E X H|) = cEZ/(2m). The dipole moment induced by
the electromagnetic field is

D = B()Eye’™ + B*(w) Efe ™',

where B(w) is the particle polarizability (12.8). The result for the absorbed
power (12.9) is

P=iwlE/|*(B* - B). (12.10)

Dividing this value by the radiation flux cEZ/(27), we obtain the absorption
cross section

w
O = 477: Im B(w). (12.11)

Using Eq. (11.8) for the particle polarizability, we find

"

127w e

¢ (& 42+ (&")

or2, (12.12)

o-abs( w) =

where the complex dielectric constant of the particle material is taken in the
form e(w) = ¢'(w) + ie"(w) with &' and £" real. We see the expected
result that the absorption cross section a,,, ~ (r,/A)rg is small compared to
the particle cross section 7r¢.

The absorption cross section is proportional to the cluster volume or to
the number of cluster atoms n. From this it follows that the specific
absorption cross section, that is, the cross section per atom, does not depend
on the cluster size. As a demonstration of this result, Fig. 12.2 gives the
measured absorption cross section of lithium clusters of different sizes. The

proportionality of the absorption cross section of clusters to the number of
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Figure 12.2 The specific absorption cross section of lithium clusters of different
sizes. From left to right, the number of cluster atoms is 139, 270, 440, 820, and 1500.

cluster atoms holds true with an accuracy of 20%—-30% which is within the
accuracy of measurement of the absolute values of these cross sections.

The absorption cross section allows one to determine the radiated power
plw) of a particle placed in a hot gas or vapor. The equilibrium of the
particle with blackbody radiation gives

hw’/m2c3

exp(hw/T) ~

p(@) = hoi(@) oy (0) = [Os(@). (12.13)

Here i(w), given by Eq. (7.30), is the random photon flux of blackbody
radiation in the space where this radiation propagates, and T is the particle
temperature.

The power radiated is proportional to the particle volume. Then if the
radiation of the plasma is due to the particles within it, the total power of the
radiation is proportional to the total number of atoms constituting these
particles. Correspondingly, the radiated power does not depend on the size
distribution of the particles. This result follows from the model of a bulk
particle and Eq. (11.7). It simplifies the analysis of radiation by gases
containing clusters or small particles.
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12.4 MOBILITY OF LARGE CLUSTERS

Because clusters or small particles contain large numbers of atoms, their
mobility in a gas is far less than that of individual atoms or molecules. We
shall now examine the mobility and diffusion coefficient of clusters in a gas,
within the framework of the liquid-drop model for the clusters. First we
consider the case when the cluster radius r, is large compared to the mean
free path A of gas molecules: r; > A. Assume the cluster to have a charge e
and to be moving in the electric field E. Then the electric force ¢E acting on
the cluster is equal to the frictional force given by the Stokes formula,
so that

eE = 6mr,nv,

where 7 is the gas viscosity coefficient, and v is the average cluster velocity
due to the electric field. This gives the expression

vl e
K = —_— =
[E|  6mrym

(12.14)

for the cluster mobility. Using the Einstein relation gives the diffusion
coefficient
KT T

D= — =
e 6mrym

(12.15)

for the cluster. Equation (12.15) shows that the cluster diffusion coefficient
does not depend on the cluster material. The only cluster parameter in the
above expression for the diffusion coefficient is the radius.

Now we consider the other limiting case: A > r;,. Then the cluster
diffusion coefficient is determined by successive collisions with gas molecules,
and is given by Eq. (10.6). Because the collision cross section of a gas
molecule and the cluster is 7rg, Eq. (10.6) gives

VvI/m

2 )
Nr§

D~ A>rg,

where m and N are the molecule mass and number density, respectively.
Combining the above equations, we have

D

= 1 + a Kn), 12.16
smr (1 aKn) (12.16)

where a = 3.1 is a numerical coefficient, and Kn = A/r, is the Knudsen
number. In particular, for air at atmospheric pressure and room temperature,
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this expression can be rewritten in the form

D, 0.14
D=1+ :

Ty Ty

where D, = 1.3 X 1077 ¢cm?/s and r, is expressed in microns.

We can obtain a comparison of the cluster diffusion coefficient with that
of atomic particles in a gas (D,) for the case r, < A. According to Eq. (10.6),
the ratio of these values is

D _ [E(mY
D m\ry]’

where u is the reduced mass of the given atomic particle and a gas molecule,
and p, is the interaction radius of atomic particles, which can be estimated
according to Eq. (4.7). This value depends weakly on the collision energy and
on gas parameters. In particular, for atmospheric air at room temperature,
the quantities appearing in the expression have the values p, =40 nm,
D,N=48x 10" cm™' s™', and DNrg = 4.6 X 10’ cm/s, where N is the
number density of air molecules.

12.5 RECOMBINATION COEFFICIENT OF SMALL CHARGED
CLUSTERS

If electrons and ions in a plasma are attached to clusters, reduction of
separated charges in the system occurs, as it does in the absence of clusters,
by recombination of positive and negative ions. We assume that the cluster
size is small (r, < e?/T) and that clusters can have only a single charge. The
recombination coefficient of two clusters with opposite charges is given by

a=4dme(K,+K_)=4me*(D,+D_)/T, (12.17)

from the Langevin formula (11.33), where D, and D_ are the diffusion
coefficients of positive and negative clusters in a gas. From Eq. (12.15), when
ro < A, it follows that a ~ ry2. In particular, for air at room temperature
and atmospheric pressure, we have ard = 2.6 X 1072 ¢m’/s.

12.6 MULTICHARGED CLUSTERS IN HOT GASES
AND PLASMAS

The work function of metals is usually small compared to the ionization
potential of the constituent atoms. (See data in Appendices 10 and 12.) In
like fashion, the ionization potential of clusters is smaller than that of atoms.
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This leads to ionization of clusters in hot gases under conditions where the
degree of atomic ionization is small. As a result, a plasma containing clusters
is formed in hot gases, and the clusters are a source of electrons. We can
evaluate the average charge of the clusters in a hot vapor. The number
densities N, and N, of clusters consisting of » atoms and with charges Z
and Z + 1 are related to the electron number density N, by the equation

3/2
NZ(n)Ne _ ( meTe ) exp(— ]Z(n) ) (1218)

Nya(n) "\ 2mh? T,
analogous to the Saha formula (2.17), where I,(n) is the ionization potential
of cluster ions of charge Z consisting of n atoms. For large metallic clusters
we have

I;(n) =1I,_,(n) +ée*/ry,

where r, is the cluster radius and e?/r, is the energy required for electron
removal from the cluster surface to asymptotic distances. We can write the
cluster ionization potential for Z = 0 in the form

Iy(n) =Wy +an™ /3, (12.19)

where W, is the work function of the corresponding metallic surface, a = I
— W, and I, is the atomic ionization potential. Thus the ionization potential
for the cluster of charge Z is

Ze?

a a
Liny=Wy+ —+—=W,+ — + —,
Z( ) 0 n!/? ro 0 n!/? n'/3

(12.20)

where, in accord with Eq. (12.2), we have b = e /r,, = e*[ 4wp/(3m )]'/3.
Equations (12.18) and (12.20) determine the mean charge Z, of a cluster
ion, obtainable from the relation N,(n) = N, (n), which has the form

roT,
zZ, - — {m

2 (meTc )3/2

N, \2a#?

e’

If clusters are the only donors of electrons, plasma quasineutrality leads to
NZ, = N,, where N is the number density of clusters and Z, is their average

charge. One can see that the average cluster charge increases weakly with
increase of its radius.
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12.7 CHARGING OF SMALL PARTICLES IN A PLASMA

At low temperatures, small particles in a plasma can absorb electrons and
ions. This process leads to decay of the plasma and charging of the small
particles. We consider this process in the context of a plasma containing
positive and negative ions and with the liquid drop model for the cluster. We
first assume the mean free path A of the ions to be small compared to the
particle radius r,. Ion motion is then determined by its diffusion and drift
under the influence of the electric field of the charged particle. The number
density of ions on the particle surface is zero, and approaches an equilibrium
value at large distances from the particle. We can determine the ion current
on the particle surface from this information. The current of positive ions
directed towards the particle of charge Z at a distance r from it is

I=4nr*(—D, dN/dr + K,EN)e.

The first term arises from diffusion effects, the second term corresponds to
drift motion, D, and K, are the diffusion coefficient and the mobility of
positive ions, e is an ion charge (usually just the electron charge), and
E =Ze/r? is the electric field strength due to the particle. Using the
Einstein relationship (11.3) between the diffusion coefficient and the mobility
of ions, the positive-ion current at the particle surface is

1= —41rr2D+e(— - N

dN  Ze?
dr Tr?

This expression can be considered to be the equation for the ion number
density. We take into account that the ions do not decay in space and hence
that the ion current does not depend on r. Solving this equation with the
boundary condition N(r,) = 0, we obtain

N I rdr' Ze?  Ze?
(r) 4wu+ef?e"p ™ T

To
Ze?  Ze?
expl — — — | — 1.
Tr, Tr

Since at large r the ion number density tends to the equilibrium value in a
plasma N, we obtain the expression

Il

IT
47D, ge*

Il

, 4nD N, Zé*
" Tlexp(Ze?/Tr,) —1]

(12.21)
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for the ion current. This is the Fuchs formula. In the limit when the particle
charge is zero, this expression transforms to the Smoluchowski formula for
the diffusive flux of particles on the surface of an absorbing sphere,

I./e = 47D N, r,. (12.22)

Equation (12.21) describes the positive-ion current. In order to obtain the
expression for the negative ion current, it is necessary to make the change
Z - —Z, and replace positive-ion parameters by those for negative ions.
The negative-ion current to the particle is then

4wD_N_Ze*

I-= T[1 — exp(Ze?/Tr,)|

(12.23)

If the positive- and negative-ion parameters are identical, the negative-ion
current is greater than the positive-ion current because the particle has a
positive charge and attracts negative ions. In the limit Ze?/(r,T) > 1,
Eq. (12.23) reduces to the Langevin formula (11.33).

We can determine the equilibrium charge of the particle in a quasineutral
plasma, where N, = N_. Then the positive- and negative-ion currents are the
same, which gives the particle charge

roT D,
Z=—1In . (12.24)

e’ D_
Thus the particle has a positive charge if D> D_, so that positive ions have
a higher mobility than negative ions. Note that Eq. (12.24) is valid under the
condition

e2

> —, 12.25
Ty T ( )

In this case an individual ion captured by the particle does not significantly
change the particle potential. The above expressions are valid if r, > A. For
atmospheric air at room temperature, the relation (12.25) is valid for r, >
0.06 um and A = 0.1 pm.

12.8 CHARGED PARTICLES IN AN AEROSOL PLASMA

Ions in a plasma tend to adhere to small particles, and so these particles
influence the parameters of the plasma. This fact is of special importance for
atmospheric plasmas. We shall consider a plasma regime wherein charged
atomic particles are created in the plasma by an external source, and their
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decay occurs through ion—ion recombination. The presence of small particles
or clusters in such a plasma can change its properties. The balance equations
for the number densities N, of positive ions and N_ of negative ions in the
plasma have the form

dN, I,N,
S~ =G - aN,N.——=,

dN I_N,

—:l‘t— =G — aN+N - e 5

where G is the rate of ionization by an external source, « is the ion—ion
recombination coefficient, N, is the number density of particles, and I, and
I_ are ion currents to a particle as given by Eqgs. (12.21) and (12.23).

For simplicity we consider the case Z < r,T/e*, when the ion current is
described by the Smoluchowski formula (12.22). Then N,= N_= N,, and the
balance equation in the stationary case has the form

G — aN? — kNN, = 0,

where k = 4w Dry, and D = (D, + D_)/2 is the average diffusion coeffi-
cient of ions in a gas. This equation shows that the recombination of ions
through the participation of particles is stronger than in particle-free space
when

N, > VGa /k. (12.26)
Then the number density of ions is
N, = G /(kN,). (12.27)

To make numerical estimates for an atmospheric plasma, we take
G~10cm™® s ! and a~ 107* cm?/s; and for ions with a mobility K =
1 cm?/(V s), we have k/r, = 0.3 cm?/s. The condition (12.26) has the form
N,ry > 0.01 cm ™2, In particular, for particles of size r ~ 10 wm, this gives
N, > 100 cm™? (corresponding to densities p > 4 X 1077 g/cm’ for water
vapor), so that Eq. (12.27) leads to the estimate N;N, ~ 3 X 10* cm™°.

Note that Eq. (12.24) for the particle mean charge relates to a criterion
opposite to that expressed in (12.26), in that the number of small particles in
a plasma is relatively small and they do not change the plasma properties. If
the condition (12.26) is valid, the particle charge is small. In addition,
according to the Smoluchowski formula, we have N,D,= N_D_, and the
condition of the plasma quasineutrality N,+ Zn = N_ together with
Eq. (12.27) gives

Z =

N_—N, G 1 1
( ) (12.28)

= 3 —_—
N, 4mryN}\D_ D,

for the mean particle charge Z. Thus, at large number densities of particles
N, their average charge decreases as N, 2
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Let us consider the case of particles sufficiently small that r, < e2/T.
Then particles are mostly neutral, and the number of particles with charge 2e
or more is exponentially small because the Coulomb barrier of a charged
particle is greatly in excess of the thermal ion energy. We introduce the rate
constant k, .., for a particle of a charge m to increase its charge by one as
a result of attachment of positive ions, and use the same notation as for other
rate constants. According to the Smoluchowski formula (12.22), we have

ko, =4mD.ry, ko =4mD 1y, (12.29a)

and the Langevin formula for the other processes gives

k,o=4meK_=4mwD_e*/T,

(12.29b)
k_ | ,=4meK = 4nD e*/T.

From this we can solve for the number densities N;, N, and N_, of
neutral, positive, and negative small particles by using the charge balance
equations (for example, ko NyN, = k, (N, N_) to obtain

roT N, reI N_

1 NO 62 T, N—l N07N—+; ry < ez/T. (1230)
Note that the number density of double-charged particles is exponentially
small (~ exp[—e2/(r,T)D.

In the regime being examined, where A < r, < e’/T, small particles are
mostly neutral, and neglecting the recombination of charged particles corre-
sponds to the condition k; (N/N_, > aN,N_,. In accordance with the
above expression, this criterion can be rewritten in the form

N, /ael 12.31
>> _ .
0 roT ( )

In particular, for water vapor at room temperature this amounts to N, >
4 X 10°YG , where G is expressed in cm™*s™', and N, is in cm~>.

Thus, three parameters with the dimensions of size—r,, e?/T, and
A—determine the nature of the charging of a particle. If r, > e’/T, the
variation of the particle’s electric potential resulting from an attachment of
one ion is small compared to T/e; if r, < e?/T, the particle can have only
a single charge, and ion interactions with charged and neutral particles are
significantly different. If r, > A, the diffusive character of ion motion in a
gas determines the attachment of an ion to the particle; if r, << A, charging
of the particle results from successive collisions with ions. Thus, the nature of
the charging of a small particle depends on the relative magnitudes of the
above size parameters.
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12.9 ELECTRIC FIELDS IN AEROSOL PLASMAS

We now consider a mechanism that occurs in the Earth’s atmosphere, in
which a charge separation results from the action of gravity on charged
aerosols in the atmosphere. This charge separation creates electric fields in
the plasma. The electric current thus generated is counterbalanced by an ion
current. Thus we have

Zenv =eE(K, N, + K_N_), (12.32)

where n is the number density of aerosol particles, Ze is their mean charge, v
is the velocity with which they fall, E is the electric field strength, and K,
and K_ are ion mobilities. The velocity with which a particle of radius
ro > A falls follows from the condition that the particle weight is equalized
by the Stokes force, which gives the expression

4__.3 _
3Try ppg = 6mryMU,

where p, is the mass density of the particle and = is the gas viscosity
coefficient. From this it follows that

2r¢ pog
U= .
9

(12.33)

For simplicity we consider the case of nearly equal ion mobilities. We
introduce the quantities N=(N,+ N_)/2, K=(K,— K_)/2, and AK =
K,— K_. Then equation (12.32) gives

Znv
~ 2KN’

E (12.34)

When the plasma contains aerosol particles of large sizes as well as ions, and
the number density of particles is large, then Eq. (12.26) is relevant. Then,
according to Eqgs. (12.27) and (12.28), the electric field strength is

AK v

=— 12.35
K 2K ( )

12.10 ELECTRIC PROCESSES IN CLOUDS

The above results can be applied to analyze the processes that occur in
clouds and cause charging of the Earth. These processes begin with the
condensation of water vapor at altitudes of several kilometers, where
the temperature is lower than near the surface of the Earth. This leads to the
formation of clouds consisting of small water particles in the liquid and solid
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(ice) states. In the course of condensation, the particles increase in size, and
they fall under the action of gravity. Simultaneously, these particles acquire
electric charge that is mainly negative, because the diffusion coefficient of
negative ions in the atmosphere is higher than that of positive ions. The free
fall of charged aerosol particles causes an electric current in a cloud and
leads to separation of the charges in it. As a result, a storm cloud is formed
with an electric potential of several million volts with respect to the Earth.
Breakdown between a cloud and the Earth charges the Earth negatively.
Thus the separation of charges in a cloud can have important effects on the
operation of devices on Earth that depend on electrical processes.

We have seen that electrical processes in the Earth are connected with
hydrological processes in the atmosphere. We can give some data that
measure the magnitude of these phenomena. As a result of water evapora-
tion, a total of 4 X 10" metric tons of water per year, or 13 million tons per
second, circulates through the atmosphere. This water leads to charging of
the Earth with a mean current of about 1700 A. Thus, the specific transfer of
electricity is 1.3 X 107! C/g. We can compare this value with the specific
charge of a water drop. Because D,/D_= 0.8 on the average for atmo-
spheric air, Eq. (12.24) gives the specific charge of 1.5 X 107° C/g for a
water drop of radius 10 um, and 1.5 X 10~!' C/g for a drop with a radius of
100 pm. This formula is valid for a small particle charge. If this constraint is
violated, Eq. (12.24) overestimates the charge. From these data, it follows
that the average size of water drops does not exceed several tens of microns
for drops whose fall creates the electric potential of a cloud.

We shall make one more estimate on the basis of Eq. (12.24), according to
which the charge on a particle is proportional to its radius while the velocity
of fall is proportional to the square of its radius [see Eq. (12.33)]. Thus, the
contribution to the current from a single particle is proportional to the cube
of its radius, and the total current resulting from the free fall of charged
particles is proportional to the total mass of water participating in the
process. Assume that the current resulting from the free fall of charged
particles in clouds is equal to the current to the Earth’s surface, which is 1700
A. Then we find that it is necessary to have 4 X 10'' metric tons of water in
the atmosphere in the form of drops or particles in order to produce the
observed current. We use an understated estimate because Eq. (12.24) gives
overstated values for the particle charge. In actuality, the Earth’s atmosphere
contains (3-8) X 10'?> metric tons of water, which can clearly provide the
charging rate of the Earth that is necessary for the observed currents.

Parameters typical of a storm cloud are that the average cloud thickness is
L = 4 km, and a typical electric field strength is £ = 100 V/cm, so that a
typical cloud potential is of the order of 107 V. In addition, the number
density of noncompensated charge is AN ~ E/(4wL) ~2 X 1077 C/cm?,
and that corresponds to a number density of electron charges of about 100
cm ™3, This is several times smaller than the number density of molecular ions
in the atmosphere.
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We can make one further estimate stemming from these data. Assuming in
Eq. (12.34) that AK/K = 0.2, K=1cm?/(V cm), and E = 100 V /cm, we
obtain from this equation that r, = 300 pm. This is greater than the above
upper limit for the drop radius. This contradiction testifies to the compli-
cated character of processes in a storm cloud compared to the simple nature
of Eq. (12.34). Along with ions and small particles (of size ~ 10 um), small
particles of sizes smaller than 1 xm are present in a cloud. Small drops carry
the main part of the plasma charge, and change the ratio between the
number densities of positive and negative ions in a plasma. Indeed, according
to Eq. (12.28), the particle charge in a two-component system falls with an
increase of the particle number density if the criterion (12.26) is valid. Then
the number density of ions of each charge is determined by the particle
number density. This connection is broken in a many-component system,
where the particle charge does not depend on its density, and electrical
processes become more effective.

We can make estimates for a storm cloud assuming that small particles
regulate the ion number density in a plasma, and that large particles with
sizes of tens of microns cause the charge separation in the cloud. We use
Eqgs. (12.24) and (12.34) for a charged particle with typical parameters
AK/K =02, K=1cm?/(Vcm), E = 100 V/cm, typical ion number densi-
ties N ~ 102-10° ¢cm~3; and a number density of water particles, n, that
creates an electric current nry ~ 5 X 1077-5 X 1076, This corresponds to
the water content in cloud particles of 2-20 g per kilogram of air. In reality, a
storm cloud is formed if the water content exceeds 7 g of water per kilogram
of air. Thus, the physics of processes in real clouds is relatively straightfor-
ward. But even the above simplified scheme shows the complex character of
the phenomenon.

12.11 SIZE DISTRIBUTION OF CLUSTERS IN GASES

For clusters situated in a plasma or hot gas, their size distribution function
(we characterize the cluster size by the number of atoms » in a cluster) is
determined by processes governing cluster growth and evaporation. Clusters
will be in equilibrium with a gas or vapor consisting of the same atoms. The
equilibrium is maintained by processes

A, +AoA, . (12.36)

We shall apply the liquid-drop model of the cluster to the analysis of this
equilibrium. We assume the parameters of the cluster surface to be identical
to those of the surface of the same matter in bulk. From this hypothesis we
evaluate the flux of atoms attaching to the cluster surface and the flux of
atoms evaporating from the cluster. First we consider these processes for a
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bulk surface. The attachment flux of atoms in a gas to the bulk surface is

/| T
e = 1 =—— NE¢, 12.3
jdl 27rm § ( 7)

where the first factor is the average velocity component directed perpendicu-
lar to the surface, m is the mass of the atom, N is the number density of the
atoms, and ¢ is the probability of an atom adhering to the surface after
contact. The flux of evaporating atoms is given by the expression

jev = Cexp( _EO/T)’ (1238)
where ¢, is the cohesive energy of the bulk surface in accordance with Eq.
(12.1), and the parameter C depends weakly on the temperature and is
determined by properties of the surface. If the atom number density is the

same as the number density of saturated vapor N, at this temperature, the
attachment flux becomes equal to the evaporation flux:

T
oy =Ju = VY —— , 12.39
o ==\ 5 M T (12.39)

where N, (T) = N, exp(— &,/ T). This determines the factor C in Eq. (12.38)

sat
as
C d N,
B \' 27m 33

Within the framework of the liquid-drop model of the cluster, we have the
expression (12.37) for the flux of attaching atoms. If we associate properties
of the bulk surface with the surface of a cluster of the same material, we can
use the above expression for the evaporation flux by replacing the atomic
binding energy ¢, of the bulk surface by the cohesive energy &, of cluster
atoms. Then Eq. (12.39) acquires the form

i —C En T nor En %0 (1240
Joo = Const-exp( = 2= ) =/ 5 Nu(T) g exp( = 272 (12.40)

In thermodynamic equilibrium between clusters containing # — 1 and n
atoms, the rates of decay and formation of clusters must be the same, so that

Nnjev = Nn—]jal’ (1241)

where N, is the number density of clusters containing n atoms. This leads to
the relation

N,_,N
N

n

o 80) (12.42)

= ]Vsal exp( - T

between the equilibrium number densities of clusters of neighboring sizes.
This equation has the form of the Saha distribution (2.17).
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12.12 CRITICAL SIZE OF CLUSTERS

We can rewrite the relation (12.42) with the help of Eq. (12.1) for the
cohesive energy of a large cluster. Within the context of the liquid-drop
model, we assume that the specific surface energy of clusters does not
depend on the cluster size, so that Eq. (12.1) gives 4 = 3 Ae = const. With
the relations &, = dE, /dn = ¢, — Ae/n'/?, this yields

N
N,

n-1

Ae
=9 -—, 12.43
eXP( n‘/~‘T) ( )

where § = N/N,, is the degree of supersaturation of the vapor. Condensa-
tion of atoms takes place at S > 1 if the vapor density exceeds its saturation
value for a given temperature. Then from Eq. (12.43) it follows that the
cluster number density as a function of cluster size has a minimum at the
critical number of cluster atoms

Ae
n, = . (12.44)
ThnS

The concept of the critical size plays a primary role in the description of
the nucleation of neutral vapors. In other words, for clusters whose size
exceeds the critical size, the probability of their growth exceeds the probabil-
ity of their evaporation, while the opposite relation holds for clusters with
n < n,. Then the condensation rate is proportional to the equilibrium
number density of clusters of the critical size. The greater is the degree of
supersaturation, the smaller is the critical radius. For large charged clusters
at high degrees of supersaturation, the critical-radius criterion is violated.
This is because higher-order terms in the expansion in n of the binding
energy in Eq. (12.1) change the behavior of the number density of clusters as
a function of their size. For this reason, ions are nuclei of condensation in
a plasma.

According to Eq. (12.43), the number density of clusters as a function of
their size has a minimum at the cluster critical size. This leads to an
important conclusion. Clusters are an intermediate phase of matter between
gaseous and condensed phases. According to Eq. (12.43), most atoms of a
supersaturated vapor (§ > 1) of a gas-condensed system are found in the
condensed phase under conditions of thermodynamic equilibrium. On
the contrary, in a nonsaturated vapor (S < 1), most atoms are found in the
gaseous phase. This means that clusters constitute a small part of the atoms
in the system at thermodynamic equilibrium. But transition from the gaseous
to the condensed phase takes place through the formation and growth of
clusters. From this one can conclude that a large content of atoms in clusters
corresponds to nonequilibrium conditions. Hence methods of generation of
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clusters are based on fast nucleation of vapors or gases in a space in a
condition of violation of their thermodynamic equilibrium with a condensed
phase. This occurs in the mixing of a flow of evaporating atoms from a solid
surface with a flow of a cold gas, or by a free jet expansion of a vapor either
in a buffer gas or without it.

12.13 CLUSTERS IN HOT, WEAKLY IONIZED GAS

One can accumulate clusters in a spatial region by transporting them to this
region from where they are generated. This is done, for example, in cluster
light sources when cluster radiators are gathered in a high-temperature
plasma. Due to the charge of the clusters, their interaction with electrons is
essential to the heat balance of the clusters. As a result, the temperature of
the cluster will exceed that of the gas. We shall consider thermal equilibrium
between clusters and a plasma that is supported by collisions of the clusters
with atoms in the gas and with plasma electrons. We denote the cluster
temperature by T, and, as usual, take the gas temperature T to be smaller
than the electron temperature 7,. Colliding with clusters, atoms and elec-
trons exchange energy with them, so that the cluster temperature is deter-
mined by the temperature of the gas and of the electrons. We can use a
simple model for this process in which the mean energy of the atoms varies
from 37/2 up to 37T,/2 after collision with the cluster, and the mean
electron energy varies from 37, /2 to 3T, /2. This takes place when a strong
interaction exists between colliding atoms and clusters, and in particular if
these collisions proceed through capture of the atom by the cluster surface.
We assume that the process occurs as a result of contact of an atom or an
electron with the cluster. Hence, the cross section for such a collision of an
atom with a cluster is 7r?, where r, is the cluster radius; and the rate
constant of electron—cluster collision is given by Eq. (5.9), where the parame-
ter R, is equal to the cluster radius. Using the liquid-drop model and
introducing the cluster charge Z, we find the rate constants k for atom-—
cluster (k,) and electron—cluster (k,) collisions to be

) 8T
k, = vmrd) =1 — mri,
mm

Ze? 8T,
1+ —1)= mrd
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(12.45)
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Here v, and v, are the atom and electron velocities, &, is the electron
energy, and the averaging is done over the velocity distribution of atoms or
electrons. We assume the cluster radius to be sufficiently large that collisions
are governed by classical laws, but still small in comparison with the mean
free path of atoms and electrons. Hence, each cluster collision is with a single
particle.
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From the above analysis, the equation for the cluster temperature is
(T - Tcl)kaNa + (Te - Tcl))keNe = 0’

where N, and N, are the number densities of atoms and electrons respec-
tively. This leads to

LTl T (  ZE)N, 126
=7 = + — | . :
o 1+¢° ¢ Tm, roT, | N, ( )

These relations make it possible to determine the temperature of clusters in
a plasma. From Eq. (12.46) it follows that the cluster temperature is between
the gas and electron temperatures. Because of the small electron mass and
high electron temperature, the difference between the cluster and gas tem-
peratures can be very slight when there is a low concentration of electrons in
a plasma.

12.14 KINETICS OF CLUSTER PROCESSES IN
THE PARENT VAPOR

We wish to examine the evolution of clusters in a plasma. Introduced into a
plasma, clusters create their own vapor as a result of their partial evapora-
tion, and then they interact further with this vapor by means of the processes
(12.36). Note that other processes involving clusters, as their transport in the
plasma and their heat balance, proceed through collisions of gas atoms and
electrons with clusters. Since clusters are charged, one can neglect
cluster—cluster collisions in the kinetics of clusters, because clusters do not
contact each other in these collisions. Thus the equilibrium between clusters
of different sizes is accomplished only through the processes (12.36).
This equilibrium leads to some particular size distribution function for the
clusters, and maintains a certain number density of free atoms. We shall
consider this equilibrium and the character of the evolution of cluster sizes in
this case.

First we find the expression for the collision integral 7, as a function of n.
This collision integral is responsible for the variation of the size distribution
function of clusters due to the processes (12.36). Evidently, it has the form of
the Fokker—Planck equation (9.27) for the large clusters under consideration.
We can rewrite the above expressions for the fluxes of attaching and
evaporating atoms in terms of the rate constants of these processes. For the
liquid-drop model, we have

jumré =k, N,

n
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where r, is the cluster radius [determined by Eq. (12.2)], and the attachment
flux is given by Eq. (12.37). Hence, the rate constant k, for attachment of
atoms to a cluster consisting of n > 1 atoms is

k, =kyén??,

where

8T
—— = 1.93T'2m/% 23 (12.47)
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Here m is the mass of the atom and p is the bulk density. The principle of
detailed balance, used for deduction of Eq. (12.40) for a macroscopic cluster,
gives the rate v,,, of evaporation of an atom from a cluster consisting n + 1
atoms as

Age
1 :kn(Tcl)) Sdl( l)exp(———;ﬁ)' (1248)

Here, according to Eq. (12.1), the cluster cohesive energy is &, = dE, /dn =
gy — Ae/n'? (Ae=2A4/3), T, is the cluster temperature, and N, (T,) is
the number density of atoms at the pressure of saturated vapor correspond-
ing to the temperature T,. On the basis of these rate constants, the balance
equation for the number density of clusters N, consisting of n atoms is

= Nk, ,N,_, — Nk,N, — vy, N, + v, | N,,,. (12.49)
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When n > 1, as in the case being considered, the relation f, =f,_, +
df,/dn holds true for any function f,, so one can rewrite the kinetic
equation for clusters using Eq. (12.49) to obtain
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(12.50)

The right-hand part of this equation, the collision integral, is a fundamen-
tal result, and is responsible for transitions between clusters of different
sizes. For large n, which is the case at hand, this equation has the form of the
Fokker—Planck equation. Writing N,,, = N, + dN, /dn, one can represent
the collision integral as the sum of two fluxes. The first one, the hydrody-
namic flux, is expressed through the first derivative with respect to n; and the
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second flux, the diffusion flux, depends on the second derivative with respect
to n. The diffusion flux is small compared to the hydrodynamic flux, but it is
responsible for the width of the size distribution function of clusters. Neglect-
ing it, we represent the collision integral in the form

g 2/3 T As
]" = —é’_n kO(T)gn Nn N_Nsat(Tcl) 7 €xp Tdnl/?a : (1251)

Taking into account only processes (12.36) for the growth and evaporation
of clusters, the conservation of the total number density of clusters in a
space is

N + ]V(ol const > jvsa(( cl)’ (1252)
where N is the number density of free atoms, N, = L,nN, is the total
number density of atoms in clusters, or atoms bound together, and the
number density of free and bound atoms is large. From this and Eq. (12.50),
the balance equation for the number density of free atoms has the form

dN d
E —EgnN,, =

n ot
—fdnko(r)gnz/w[ Na(Ta) { = exp( )I (12.53)

The first term in the brackets of Egs. (12.51) and (12.53) corresponds to
attachment of atoms to clusters, and the second term to the evaporation of
atoms from the cluster surface. According to the definition of the cluster
critical size n,, for which the rates of these processes are equal, we have

Neao (T )\/ ( Ton? ) (12.54)

Note that the critical radius and the number density N of free atoms are
determined by processes of cluster generation and cluster decay in a cluster
plasma, where most of the atoms of a given sort are bound in clusters. We
can determine the size distribution function in this case by introducing
parameters of these processes: M,, the generation rate of clusters; and 7, the
cluster lifetime, assumed to be independent of the cluster size. We consider
the limiting case when the cluster lifetime is sufficiently long that the average
cluster size is large compared to the critical size. This corresponds to a
criterion containing the ratio of the cluster life 7 to the kinetic life (k,N) ™!

Il
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B =koNré> 1. (12.55)
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The kinetic equation for the distribution function in this case has the form

+M, - =, (12.56)

and in the limit of large cluster sizes, n > n_, one can neglect cluster
evaporation. That is, the second term in the expression of the collision
integral (12.51) can be neglected, and the kinetic equation (12.56) for large n
takes the form

d 23N Ny 0 12.57
— + — =0. .

This corresponds to the condition N > N, (T), or Ae > Tnl/. Here we
take into account the fact that clusters being generated concentrate in a size
range of the order of the critical size, so that for large clusters M, = 0. The
solution of Eq. (12.57) is

C 3n'/3
N, = YY) exp( 3 ), n>n_. (12.58)

From this we find the average cluster size supposing that it is determined by
large clusters. From formula (12.58) we have

[n®N,dn 80 CB’ ,
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If we assume that large clusters give the main contribution to the normaliza-
tion condition of the size distribution function, we get

40
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We can construct the size distribution function of clusters of all sizes for
the regime under consideration. The equality of the total rates of atomic
attachment and cluster evaporation leads to the relation

Ae 2
[ n?3N, dn exp( m) = 5CBs. (12.60)
0

Here S = N/N,(T) is the degree of supersaturation, and in the regime we
are examining, we have § > 1. We take into account that the rate of atom
attachment is determined by large clusters, and insert the size distribution
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function (12.58) in the right-hand side of the relation. Using this asymptotic
expression, we can represent the size distribution function of clusters of all
sizes in the form

C a 3n'/?
]V,l = ’127 expl| — ; - B . (12.61)
The parameter a can be found from the relation (12.60), and if we suppose
the integral (12.60) to be convergent in a narrow region of n, then the result
is

9/7

a= (3@”’(/3%)”’(%)9/7 = 0.34(/335)“/7(A—T8) . (12.62)

From this it follows that a > 1, and this parameter is connected with the
cluster critical size. For this form of the distribution function, large cluster
sizes give the principal contribution to the normalization condition, so that
from Eq. (12.59) we have N, = 2CB*. This approximation gives the size
distribution function of clusters for all n, and allows one to understand how
it depends on the character of processes in a cluster plasma.

12.15 COAGULATION OF CLUSTERS IN EXPANDING GAS

A frequently employed method for the generation of clusters is to have a
weakly ionized vapor expand as a free jet. This process generates a beam of
clusters or cluster ions, and can be used for thin-film deposition on surfaces.
If neutral clusters of large sizes are formed in a plasma, cluster growth
proceeds by cluster coagulation as represented by the scheme

A+ A, = AL (12.63)

That is, cluster growth results from the coalescence of colliding clusters. As a
gas expands and the cluster density decreases, the process becomes slower. It
terminates when a typical expansion time 7,, is of the order of the character-
istic time (N, k,)~" for cluster coagulation, where N, is the number density
for clusters consisting of » atoms, and k, is the rate constant for their
coalescence. Introducing the total number density of atoms inside clusters
N,, which must be conserved in the absence of expansion, we have N, ~ N, /n.
This leads to the equation

n ~ Nok,T., (12.64)

for the average cluster size at the completion of the process.



METALLIC CLUSTERS IN ARC PLASMAS 201

Taking clusters to be both liquid and spherical, we assume that each
contact between clusters leads to the joining of the clusters. Then the rate
constant for the coagulation of two clusters of numbers of atoms n,; and n, is

, 8T 1/2 s
k(ny,ny) = m(r, + r2)'(————) = ko(n}* + n¥?)

n,Tn,

. (12.65
un nn, ( )
Here k, is given by Eq. (12.47), and r, and r, are the radii of clusters with n,
and n, atoms, respectively. This expression corresponds to the liquid-drop
model of clusters. Then, using k, = k,n*/? in Eq. (12.64), we find the
average cluster size at the end of the process to be

i=C(kyNyr,)””, 7A>1, (12.66)

where C ~ 1 is a numerical coefficient. Its value can be obtained from the
analysis of the kinetics of the cluster growth, which leads to C = 3. Equation
(12.66) is the asymptotic expression for the average number of cluster atoms,
valid when the inequality

NokgTey > 1

holds true.

Equation (12.66) gives a faster cluster growth than in the case when
growth is governed by processes (12.36), if the number of free atoms is small
compared to the number of bound atoms. Thus, the growth of neutral
clusters under conditions of high cluster density proceeds by the coagulation
of clusters as in (12.63), if most of the atoms are bound in clusters.

12.16 METALLIC CLUSTERS IN ARC PLASMAS

As follows from Eq. (12.43), a uniform gas with an admixture of clusters is a
nonstationary system that is inconsistent with thermodynamic equilibrium.
The evaporation of a cluster or the attachment of parent atoms to a cluster is
a transitional step in the evolution of a cluster into either an atomic vapor or
a condensed system. An example of such an evolving system is a nonuniform
cluster plasma such as occurs in the positive column of an arc in a high
pressure buffer gas with a trace impurity of a heat-resistant metal. For
simplicity, we assume the clusters to be charged, and because the charge on
the clusters prevents them from contacting each other, the growth and decay
of clusters follows the scheme

M, +MoM,,, (12.67)

as shown in Eq. (12.36), where M is a metallic atom, and M, is a cluster
consisting of n atoms.
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Due to the high pressure of the buffer gas, transport processes are slow,
and local thermodynamic equilibrium obtains in the system. Clusters can
then persist in low-temperature regions. In this scenario, attachment of
metallic atoms or clusters to walls of the discharge tube corresponds to loss
of the metal. To compensate for this, chemical regeneration is used, in which
the metal is introduced in the form of gaseous molecules MX,, where X is a
halogen atom. This compound decomposes at high temperatures, so that
equilibrium at a given point in the discharge is expressed by the reactions

MX, & M + kX. (12.68)

Our goal is to find criteria for the existence of clusters in this system in an
intermediate region of the discharge.

With the binding energy per halogen atom given by e, the total binding
energy of atoms in the compound MX, is key. The binding energy per atom
for a bulk metal is designated by &,,. The inequality

ey <key

is a rough criterion for the existence of the chemical compound at low
temperatures. From the chemical equilibrium of MX, one can estimate a
typical temperature 7, where this compound decomposes into atoms, and
from the chemical equilibrium of clusters one can find a typical temperature
T, where clusters are transformed into atoms. These estimates are

T = In(N,/[X]) L= In(N,/[M])

Here [X] denotes the total number density of free and bound atoms X, N, is
a typical atomic number density, and [M] is the total number density of free
and bound metallic atoms. Clearly, clusters exist in the temperature range

T, <T<T,. (12.70)

(12.69)

One can determine the temperature for decomposition of clusters more
precisely from the expression

[M] ~ ]Vsat(T.’))’

where N, (T) is the saturated vapor density of atoms at the temperature 7.
The temperature designated as 7, must be approximately the same as T,,
and the difference between these values is a measure of the accuracy of
definition of these temperatures. If [X] ~ [M], the possibility of the existence
of clusters stated in Eq. (12.70) corresponds to the condition ey < gy,
which, together with the condition for the existence of MX,, gives the
constraint

ey < &gy <key (12.71)

for the presence of clusters in the system under consideration.
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TABLE 12.1. Parameters of Some Compounds of Heat-Resistant Metals

£y, LIVR T, T,, 1, Cluster
Compound eV eV 10° K 10°K 10° K Existence
HfCl, 4.2 6.0 2.4 3.0 32 +
HfF, 6.3 6.0 3.5 3.0 32 -
ThCl, 4.7 5.8 2.6 3.0 3.1 +
ThE, 6.2 5.8 35 3.0 3.1 -
TiBr, 3.0 4.4 1.7 2.2 2.3 +
TiCl, 3.5 4.4 2.0 22 2.3 +
udl, 38 5.1 2.1 2.6 2.7 +
UF, 5.7 5.1 32 2.6 2.7 -
vcl, 3.0 4.7 1.7 24 24 +
VF, 4.4 4.7 2.5 24 24 -
ZrCl, 4.3 59 2.4 3.0 3.1 +
ZrF, 6.5 5.9 3.6 3.0 3.1 -
NbCl, 33 7.1 1.8 3.6 34 +
NbF; 5.2 7.1 2.9 3.6 34 +
VF; 4.1 4.7 2.3 2.4 24 -
ItF, 2.2 6.4 1.2 32 3.2 +
MoF, 3.9 6.3 2.2 3.2 3.2 +
ucCl, 3.0 5.1 1.7 2.6 2.7 +
UF, 4.7 5.1 2.6 2.6 2.7 -
WCl, 3.0 8.4 1.7 4.2 4.0 +
WEF, 4.5 8.4 2.5 42 4.0 +

Table 12.1 lists values of the parameters appearing in the above conditions
for some compounds of heat-resistant metals. The binding energies ¢4 and
&y are obtained from Gibbs free energies or from enthalpies for these
systems. From this, the accuracy of the temperatures 7, and 7, is estimated
to be within about 100 K. The data relate to the number densities of metallic
atoms [M] = 10" ¢cm > and the number densities of halogen atoms [X] = 10'¢
cm . Thus, insertion of some metallic compounds into the arc plasma may
lead to the existence of metallic clusters in some regions in the arc, and these
cases are marked in the table by +. A cluster plasma exists in these cases.

12.17 INSTABILITY IN A CLUSTER PLASMA

In a cluster plasma, the clusters exist in an intermediate region of the
discharge-tube cross section where the condition (12.63) is satisfied. Then
one can expect that a typical cluster size is determined by a balance between
the times required for cluster growth and for transport away from the cluster
region of the discharge. We shall analyze the size evolution for a large cluster
located at the beginning in the cluster region. Neglecting the evaporation
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process for this large cluster, we have the equation

dn ,
- = Nko(T) ¢n*?, (12.72)

where we use the rate (12.47) for the growth of the cluster. In this region of
the discharge, the number density N of metallic atoms is assumed to be large
compared to the number density of atoms in a saturated vapor at the same
temperature. Using the diffusion mechanism for transport of clusters in a
buffer gas, the distance x through which a cluster moves in the time ¢ is
x? = 2D,t. The cluster diffusion coefficient D, in a buffer gas as a function
of its size is D, = D,/n*3, where D, is independent of n. Solving Eq.
(12.72) with an initial cluster size n,, we find the relation between the cluster
displacement and its size to be

ny\'/3 6D,
x=x311- (7) , Xp = —“Nkofn})” .

It follows from this result that if the initial distance of a test cluster from the
boundary of the cluster region exceeds x,, the growing cluster remains in the
cluster region.

The cluster we are examining is one in which an atomic vapor forms
clusters located in the cluster region of an arc discharge. The development of
the instability alters the size distribution of the clusters. As a result of cluster
growth, the number density of free atoms decreases and clusters that are not
large evaporate. Hence, the number of large clusters decreases with time and
their size increases. This process stops when large clusters alter the gas
discharge parameters and the temperature distribution across the cross
section of the discharge tube is changed. Thus, this nonuniform cluster
plasma is nonstationary.



CHAPTER 13

PLASMA IN EXTERNAL FIELDS

13.1 MOTION OF AN ELECTRON IN A GAS IN EXTERNAL FIELDS

Electric and magnetic properties of a weakly ionized gas are determined in
large part by the behavior of electrons in the gas. Hence we begin by
examining the motion of an electron in a gas subjected to an external field.
The analysis can be accomplished with the kinetic equation if the collision
integral is taken in the tau approximation. Then the kinetic equation for
electrons has the form

of

ot m, ov T

F ’9_f= f_fo

: (13.1)

where F is the force acting on the electron from external fields, m, is the
electron mass, 1/7 = N,vo,, is the frequency of electron—atom collisions, N,
is the number density of atoms, and g, is the cross section for electron—atom
collisions. For simplicity, we assume 7 to be independent of the collision
velocity.

The most general form of the external force F that allows us to analyze a
variety of aspects of the electron behavior is

F = —eEexp(—iwt) — (e/c)(v X H), (13.2)

where E and H are the electric and magnetic fields, w is the frequency of the
electric field, and v is the electron velocity. We assume the magnetic field to
be constant, and the electric field to be harmonic. We define a coordinate

205
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system such that the vector H is directed along the z-axis and the vector E
lies in the xz plane.

We multiply the kinetic equation (13.1) by m_v and integrate over the
electron velocity. Then we obtain the equation of motion for the electron in
the form

dw,
et

w, €
+ m,— = —eEexp(—iwt) — —w, X H, (13.3)
T C

where w, is the electron drift velocity. One can see from this equation that
collisions of the electron with gas atoms gives rise to a frictional force
mw,/T.

Equation (13.3) is equivalent to three scalar equations. Denoting by
wy = eH/(m,) the so-called cyclotron frequency, and setting a, =

—eE,/m, and a, = —eE,/m,, we are led to the set of equations
dw, w, ror
- — w
i + P a.e” + wyw,,
dw, w,
R
sz W, iwt
— =a,e'".
dt T

The steady-state solution of this set of equations is independent of the initial
conditions, and has the form

(1 + iwT)a,e'™

w, = ,

Tl (wf - o)t + 2ier

2 iwt
wyT ae

w, = = , (13.4)

Yool 4 (wf - o)+ 2ier

Ta, e’

w, = ————.

* 1l+iewr

13.2 CONDUCTIVITY OF A WEAKLY IONIZED GAS

The solutions in Eq. (13.4) can be used for the analysis of the behavior of a
weakly ionized gas in external electric and magnetic fields. We begin with the
case of the constant electric field (wy; = w = 0). Then the electron drift
velocity w and consequent current j are

2
eET A

i —eNw=3E 5, = T 135
w=——, j= —eNw=3, 0= (13.5)

€ €
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where N, is the electron number density, and 3, is the plasma conductivity
for a constant electric field.

We consider next a more general case on the basis of the relations (13.4).
We can introduce the conductivity tensor X, in terms of a generalized
Ohm’s law

ja = EQBEB9 (136)

which is valid at small values of the electric field strength or if the electron
drift velocity is small compared to its thermal velocity. From Egs. (13.5) and
(13.6) one can obtain the general expression for the plasma conductivity
tensor

1+iwT wyT 0

1+ (0} — 012+ 2iwr 1+ (0w} -~ 0?)7r? + 2ot
wyT 1 +iwT

(Eik) = E0 2 2.2 : 2 23,2 : 0
1+ (wfy — 0 )t + 207 1+ (05 — 0°)r° + 2ior

1

0 0 .

1+ iwt
(13.7)

These results will be used for the analysis of the plasma interaction with
external fields.

13.3 DIELECTRIC CONSTANT OF A WEAKLY IONIZED GAS

We can now find the connection between the dielectric tensor of a plasma
and its conductivity tensor. The dielectric tensor ¢,, of a plasma is defined
by the relation

D, =¢,E;, D,=E, +4wP,, (13.8)
where D is the electric displacement vector, and P is the polarization per unit
volume of the plasma. That is, P is the dipole moment of a unit volume of the
plasma produced under the action of the external electric field. In the case
we are considering, the time dependence of the coordinate of an electron can
be expressed as r = r, + r’ exp(iwt), where r, is independent of the external
field and r' is determined by the motion of the electron under the action of
the field. Hence, the electron velocity induced by the external field is
w, = dr/dt = iwr' exp(iwt). The plasma polarization is

N, eWe

P=—-eY riexp(iot) = —i ,
k w
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where the index & labels the individual electrons, and the sum is taken over
the electrons in a unit volume of the plasma. Introducing the electron current
j= —eNw,, Eq. (13.8) gives D = E + 47ij/w. Then from Egs. (13.8) and
(13.6) it follows that

6 47Ti2 13.9
=8, + —3.4, :
gaB afl @ aff ( )

where §,, is the Kronecker symbol, defined to be unity if both subscripts are
the same, and zero if they are different. Thus the dielectric tensor of a system
containing free electrons has the direct connection to the conductivity tensor
expressed in Eq. (13.9).

13.4 PLASMA IN A TIME-DEPENDENT ELECTRIC FIELD

In the absence of a magnetic field, as well as in the direction of the magnetic
field should it exist, the plasma conductivity is

2
s = 0

B 1 +iwr

(13.10)

In the limit wr> 1 the plasma conductivity does not depend on the
frequency of electron—atom collisions, and the phase shift between the
electric current and the electric field is 7/2.

To consider this problem in more detail, we use the expansion of the
electron distribution function (9.23) f(v,t) = fo(v,1) + v, f|(v, 1), and take
the electric field in the form E cos wt. This gives the set of equations

afy  eEcoswt d(Vfy)
at 3m, v°Iv

=1(fy),

(13.11)
df, eEcoswt df,

Jt 3muy dv

2T

analogous to (9.33), where v = Na,* is the frequency of electron—atom
collisions. The solution of this set of equations depends on the connection
between the field frequency @ and the frequency of the energy exchange
between electrons and atoms v, ~ vm,/M. We shall consider the case where
w/v, ~(M/m,Xw/v) > 1. (The opposite case corresponds to a constant
electric field.) Then the distribution function has the form

f(v,1) = fo(v) + v fi(v)e™ + v f_ (v)e™, (13.12)
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and the set of equations (13.11) becomes

W% v (fi +f—1)] =1(fo),
a df,
(iow+v) f +5E=O’ (13.13)
a d
(—lw+v)f_, + Z% =0,
where a = eE /m,. This yields the electron drift velocity
all d]vcoswt+ wsin ot
w, = §<EZ—E[ T, ]> (13.14)

In the limit @ < p, this equation transforms to (9.35) if one uses E cos wt
instead of E.

If electron—electron collisions are neglected and Eq. (9.31) is used for the
electron—atom collision integral, the solution of the set of equations (13.13)
gives

v T 1\402
—_— + —_—
/0 6(w? + v?)

Other harmonics of the electron distribution function follow from the set of
equations (13.13).

In the other limiting case, electron—electron collisions establish the
Maxwell distribution function for electrons. Then Eq. (13.14) yields

fo=Cexp

meudu]. (13.15)

eF v cos w! + w sin wt
v? . (13.16)

W, = =
3T, 0’ + v?

for the electron drift velocity. The electron temperature can be found by
analogy with the case of a constant electric field (Chapter 9) by means of an
analysis of the balance equation for the electron energy that has the form

m?
eEw cos wt = leea(fo) dv,

where the bar above the symbols denotes averaging over time. Note that the
expression for the electron—atom collision integral does not depend on
external fields acting on a plasma. For the Maxwell distribution function, the
integral of the right-hand part of the equation was calculated in Chapter 9
[see Eq. (9.42)]. This leads to the relation

- eE v
eEwcos wt= —(———— ).
v ¢ 67T, \ w? + v?
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Using the expression (13.16) for the electron drift velocity and taking into

account the time averages cos’ wt = 4 and cos wf sin wf= 0, we find the

result

Ma* (vv/(w® + v?))

T, -T= ,
¢ 6 {vv)

(13.17)

Because the period of field oscillations is small compared to a typical time in
which the electron energy changes as a result of collisions with atoms, one
can consider the electron temperature to be constant. In the limit of small
field frequency w < v, Eq. (13.17) agrees with Eq. (9.44) if in (9.44) the
electric field strength E is replaced by the effective value E/ V2.

13.5 THE HALL EFFECT

In the absence of a magnetic field, the plasma conductivity is a scalar
quantity. When a magnetic field is applied to a weakly ionized gas, the
conductivity acquires a tensor character. This means that an electric current
can occur in directions in which the electric field component is zero. If we
consider the case where a constant electric field is perpendicular to a
magnetic field, then Eq. (13.7) yields (w = 0)

1
= y =E T, 2 3
E_tx E}y 01 +w1:,7__ ( 3 8)
13.1

- E
X 0 2 °
y ] ) 7.2

3, = -3

yx

In the limit case w7 > 1, the total current is directed perpendicular to both
the electric and magnetic fields. In this case the plasma conductivity and
electric current do not depend on the collision time, because the change of
the direction of electron motion is determined by the electron rotation in a
magnetic field. Specifically, Egs. (13.6) and (13.8) give

j, = ecN,E,/H (13.19)

in this case. We note that w7 << M /m,, where M is the atom mass. In the
opposite case, ions would drift in the same direction as electrons, so that
the total electric current would be small compared with that of Eq. (13.11). If
the transverse electric current does not reach the plasma boundary, this
results in a separation of charges that in turn creates an electric field that
slows and eventually stops the electrons. This gives rise to an electric current
in the direction perpendicular to the electric and magnetic fields. The
phenomenon is known as the Hall effect.
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We can analyze this process on the basis of the kinetic equation for
electrons. Take the electric and magnetic fields to be constant and mutually
perpendicular, with the electric field along the x-axis and the magnetic field
along the z-axis. The electron distribution function has the form

f(v) =fo(v) + o, fi(v) +0,f,(v). (13.20)

Using the same procedure as in the deduction of Egs. (9.25) and (13.13),
we obtain

av  df,
ST W
(13.21)
awy dfy
ufy =

2 2 ’
v:+ wp dv

where a = eE/m,, and v = Noa,! is the frequency of electron collisions
with atoms. These equations lead to the expressions

2

el [ 1 d 12
wX_3me vdo\ v+l )]
(13.22)
eE [ 1 d | wy?
M T 3m, v do| v?+ i ||

for the components of the electron drift velocity. In the limit w, < v, the
first of these equations transforms into Eq. (9.35).

For evaluation of the average electron energy, we use the procedure of
Chapter 9 based on the balance equation for the electron energy that has
the form

2

m,n
ewa = fTIea(fO) dv.

Using Eq. (13.22) for the electron drift velocity and Eq. (9.42) for the integral
of the right-hand part of the equation, we obtain

Ma?® <U2V/(V2 + w} )>

T,-T= 13.23
e 3 < U2V> ( )
In particular, if » = const, this expression gives
Ma?
T, -T= (13.24)

3(v? + wf,) ’
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In the limit wy > v, Eq. (13.23) yields

Ma*  Mc’E?
3wi  3H? '

T,-T= (13.25)

We now examine the case where a weakly ionized gas moves with an
average velocity u in a transverse magnetic field of strength H. Then an
electric field of strength E' = Hu /c exists in the fixed frame of axes, where ¢
is the light velocity. This field creates an electric current that is used for the
production of electrical energy in magnetohydrodynamic (MHD) generators.
The energy released in a plasma under the action of this electric current
corresponds to a transformation of the flow energy of a gas into electric and
heat energies. In consequence, this process leads to a deceleration of the gas
flow and a decrease of its average velocity. In addition, the generation of an
electric field causes an increase in the electron temperature as given by Eq.
(13.25). The maximum increase of the electron temperature corresponds to
the limit wy > v. In this limit, Eq. (13.25) becomes

T T Ma? le 13.26
. “ 3.2 73 us. (13.26)

13.6 CYCLOTRON RESONANCE

If wr> 1 and w,7> 1, the conductivities %, and % in the directions
parallel and perpendicular to the magnetic field are

1+ iwr

(wf, - w2)1'2 + 2iwr’

%= E°1 +
(13.27)

wyT

1+ (wf, - w2)1'2 + 2iwT’

2, =3

The conductivity is seen to have a resonance at w = wy, where its compo-
nents are related by %, =iX% = X;/2. The resonance width is Aw ~ 1/7.
This conductivity resonance is called the cyclotron resonance.

The cyclotron resonance has a simple physical explanation. In a magnetic
field, there is a frame of reference where an electron travels in a circular
orbit with the cyclotron frequency w,. If an electric field is applied in the
plane of the circular orbit, and if this field varies so that its direction remains
parallel to the electron velocity, the electron continuously receives energy
from the field. As with electron motion in a constant electric field, the
electron is accelerated until it collides with atoms. Hence, in both cases the
conductivities are of the same order of magnitude and are expressed in terms
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of the frequency 1/7 of collisions between the electron and atoms. If the
field frequency w differs from the cyclotron frequency w,,, the conductivity is
considerably lower, since the conditions of interaction between the electron
and field are not optimal.

We can analyze the cyclotron resonance from the standpoint of energy
absorption. The power per unit volume absorbed by a plasma is p = j - E. If
we take the x-axis to be in the direction of the electric field, then the specific
power absorbed by the plasma is

Po l —iwr 1 +iwt
= + 3 ,
2 1+(wf,—w2)1'2—2iw‘r 1+(w,%,—w2)‘r“+2iw‘r

(13.28)

where p, = 3,E? is the specific absorbed power for the constant electric
field. Absorption of energy by a plasma is connected with electron—-atom
collisions that lead to transfer to the atoms of energy obtained by the
electrons from the field.

In the region of the cyclotron resonance, with wr> 1, w,7> 1, and
(0 — wy)r] ~ 1, Eq. (13.28) yields

P_ﬂ 1
2 1+(w,_,—w)21'2'

(13.29)

One can see that the resonant absorbed power is less than half of what is
absorbed in a constant electric field. That the same order of magnitude is
obtained for these values is explained by the related character of the electron
motion in these cases.

13.7 MOTION OF CHARGED PARTICLES IN
A NONUNIFORM MAGNETIC FIELD

We shall now explore the behavior of a charged particle in a nonuniform
magnetic field as illustrated in Fig. 13.1. The particle trajectory is a helix
wound around a magnetic line of force. Assume the magnetic lines of force to
be close to straight lines, which is equivalent to the static case that a distance
L over which the magnetic field exhibits a significant variation is large
compared to the Larmor radius r; of the particle. Within this approximation
we shall analyze the motion of a charged particle in a magnetic field as in
Fig. 13.1. The presence of charged particles does not influence the character
of the magnetic field because of their small density, and the spatial variation
of the magnetic field obeys the Maxwell equation divH = 0.
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Figure 13.1 Magnetic lines of force in a magnetic trap with axial symmetry.

In the presence of cylindrical symmetry, divH = 0 can be written as

| " d
-— +

H,
= =0 (13.30)

d

At the axis, H, is zero because of the axial symmetry of the problem. Near
the axis, according to Eq. (13.30), one has

JH,
H, - _B( ) .
P 2 0z p=0

The force acting on a charged particle because of the magnetic field along
the axis is

e v.p 0H

Z
c TP 2¢ 9z

We can introduce the magnetic moment u of the particle in the usual way
as u =JS/c, where J is the particle current, S is the area enclosed by its
trajectory, and c is the velocity of light . Since in this case J = ew,/Q27),
and § = mrl (r, is the Larmor radius of the particle), we have [r;, = v,/ w,,
wy = eH /(mc)]

p=mv;/(2H).
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The force acting on the particle in the magnetic field direction can also be
written

oH

z

F,=—-pu Pyt
The minus sign means that the force is in the direction of decreasing
magnetic field.

One can prove that the magnetic moment of the particle is an integral of
the motion; that is, it is a conserved quantity. We can analyze the particle
motion along a magnetic line of force when averaged over gyrations. The
equation of motion along the magnetic field gives mdy,/dt = F, =
—updH,/dz, and since v, = dz/dt, it follows from this that d(muv?/2) =
—n dH,. From the energy conservation condition for the particle we have

d {mv?  mp? d o mv}
|\ 2 2 ) a\MT

d oo dH o du
_E(/‘L z) /‘Ldt_ zdt_‘

This yields the equation for the magnetic moment of the particle motion

du
@ 0, (13.31)
so that the magnetic moment is conserved during the motion of the particle.

We can now analyze the motion of a charged particle in a magnetic mirror
field such as that shown in Fig. 13.1. As the magnetic field increases, part of
the particle kinetic energy muv?/2 increases proportionally. If this value
becomes as large as the total initial kinetic energy, motion of the particle
along the z-axis stops, and the particle starts to move in the opposite
direction. This is the principle of a magnetic mirror, in which a particle
moves along a magnetic line of force between a region with a weak magnetic
field and a region with a strong magnetic field. Take H_,;, to be the minimum
magnetic field and H_, to be the maximum magnetic field along this
magnetic line of force; 6 is the angle between the particle velocity
and magnetic field line at the field minimum. Then if this angle exceeds 6,
given by the relation

sin® 6, = Hon/H o » (13.32)

the particle reflects from the region of the strong magnetic field and is
trapped in a bounded space.

The above principle is the basis of various magnetic traps. It acts for both
positively and negatively charged particles, so that this arrangement works for
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Figure 13.2  Trajectory of a charged
particle captured by the magnetic field
of the Earth as the particle moves along
a magnetic line of force: 1, the Earth;
2, points of reflection of the particle.

both electrons and protons. Radiation belts of the Earth (see Figs. 1.5 and
13.2) act according to this principle. Fast electrons and protons captured in
the region of a weak magnetic field of the Earth move along magnetic lines
of force and are reflected near the Earth’s poles where the magnetic field is
relatively strong. Collisions of these particles with others lead to escape from
the magnetic trap. Because of their larger mass, protons have a longer
lifetime in the Earth’s magnetic trap than do electrons, and hence the
number of captured protons is greater than for electrons. In addition, due to
the influence of the solar wind, this magnetic trap acts more effectively on
the side of the Earth opposite to the Sun.

13.8 EXCITATION OF A WEAKLY IONIZED GAS
BY EXTERNAL FIELDS

A plasma is a convenient means to accomplish energy transfer from an
external electric field to a gas. It is used in plasma generators, gas lasers, and
other devices for transformation of electrical energy to other forms. This
method allows one to transfer a high specific energy and to create a
nonequilibrium population of atomic levels and systems.

We can find the specific power transformed by a gas-discharge plasma in
the small-electric-current regime where interaction of charged particles is
nonessential and electric currents in the gas do not change its properties
significantly. One electron moving in a gas in an external electric field £
transfers to atoms of the gas the power eEw, where w is the electron drift
velocity. Therefore the power transformed per unit volume of a plasma is

P = N,eEw, = N,Nw,(eE/N,), (13.33)
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TABLE 13.1. Parameters for the Excitation of a Weakly Ionized Gas in an External
Electric Field"

& E/N we Telas Thib Yot el P/NEN (I/Ne) dT/dt
Gas eV Td 10%em/s % % % % 107 W/cm® 1077 K cm®/s
He 1 1.2 053 100 — — — 0.1 0.3
3 3.6 094 100 — — — 0.54 1.6
Ar 1 0.2 0.2 100 — — — 0.006 0.02
3 1.4 035 100 — — — 0.08 0.23
H, 1 15 2.4 6 79 5 — 5.8 12
360 7 6 93 1 — 67 140
N, 1 4 0.93 8§ 8 9 — 0 1.2
3 105 11 02 53 05 46 180 380
co 1 17 31 07 98 1 — 8.4 17
3130 13 0.1 54 0.1 46 270 560
Cco, 1 24 7 01 8 15 — 2.7 4.3
360 13 01 97 01 3 120 200

*Here N is the number density of gas atoms or molecules; 1 townsend (Td) is 1 X 1077 Vem?;
7 is the energy fraction that goes into elastic (elas), vibrational (vib), rotational (rot), and
electronic (elec) degrees of freedom; P/N,N is the specific released energy; and (1/N,)dT /dt
is the specific temperature variation.

where N, is the electron number density, and N, is the number density of
atoms or molecules of the gas. Note that the electron drift velocity w,
depends on the ratio eE/N,.

For an understanding of the practical physical quantities associated with
the energy transformation process, Table 13.1 gives the parameters of Eq.
(13.33) for mean electron energies of 1 and 3 eV. In addition, the table
contains the rate of the temperature change,

dr eEw,
dt ‘N, c,’

(13.34)

in the first stage of heating of the gas.

The quantity ¢, is the heat capacity at constant pressure per molecule.
Table 13.1 contains also the pathways of energy consumption: 7 is the
percentage of the energy transformed to the corresponding degree of free-
dom. In molecular gases in the first stage of the process, energy is trans-
formed primarily to vibrational excitation. This is a property employed in
gas-discharge molecular lasers that generate radiation by vibrational-rota-
tional transitions of molecules.

To show the high efficiency for this method of energy input, we compare it
with heating of a gas through the walls of an enclosure containing the gas.
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Assuming that heat transfer occurs by thermal conductivity, we have the
estimate
g~ kAT/Il

for the heat flux, where « is the thermal conductivity coefficient, AT is the
difference of temperatures for the walls of the enclosure, and / is a dimen-
sion of the enclosure. From this it follows that the specific power introduced
by heating the enclosure walls is

P~ kAT/I.

For a numerical estimate we take AT ~ 1000 K, « ~ 107° W/(cm K)
(a value corresponding to the thermal conductivity coefficient of air at
T ~ 1000 K), and / ~ 1 cm. The result is P~ 1 W/cm?’. Such a specific
power is reached at atmospheric pressure and a number density of electrons
of N, ~ 10° cm~3. Because the electron number density in a weakly ionized
gas can be higher by several orders of magnitude, the electrical method for
energy input into a gas by means of electrons is far more effective than
gas heating.

13.9 MAGNETOHYDRODYNAMIC EQUATIONS

At high plasma densities it is necessary to take into account the fields
produced by plasma motion. These fields, which are due to distribution and
motion of a plasma, affect the motion of a plasma; that is, the plasma
parameters and fields produced by plasma are interrelated. The motion of a
plasma and variation of its parameters can be described by the continuity
equation for the number density of electrons and ions (9.5), the equation for
the average momentum of electrons and ions (9.8), Poisson’s equation, and
Maxwell’s equations. The resulting set of equations is called the set of
equations of magnetohydrodynamics and has the form

N
— + div(Nw) = 0,
at

ow v p F 0
_+ . +———= )
at (w v mN N
divE =47 (N, — N,),
(N~ Ne) (13.35)
47 1 /JE
curlH= —j—- ——,
c c Jt
1 ¢H
curlE= — ———,
c dt

divH = 0.
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The first two equations can be written both for electrons and ions. Here w
and N are the drift velocity and the number density of electrons or ions,
respectively. To (13.35) we must add an equation of state of the type (9.11)
and the thermodynamic equation for the process (for instance, the adiabatic
equation of the process must be added if the variation of its parameters has
an adiabatic character). These equations interrelate the number density, the
temperature, and the pressure of plasma particles. We must add to these
equations also Ohm’s law relating the plasma current and the electric field
strength. The set of hydrodynamic equations with the addition of the above-
mentioned equations and the initial conditions will give a complete descrip-
tion of plasma evolution.

13.10 HIGH-CONDUCTIVITY PLASMA IN A MAGNETIC FIELD

A plasma with high conductivity will have electrons with velocities consider-
ably greater than the velocities of the ions. Then the electric current is due to
electrons and is given by

j = _eN('wE’
where w, is the drift velocity of the electrons, and N, is their number density.

If the motion occurs in a magnetic field, an additional electric field is
produced in the laboratory frame of axes, whose strength is

E = %(we X H) = - (J X H). (13.36)

ecN

€

This field acts on the electrons, giving rise to an additional force acting on
the entire plasma. The force per unit volume of the plasma is

1
eE'N, = ——(j X H) . (13.37)
C

If the plasma conductivity is sufficiently high, its response to the electric
field (13.36) will result in the movement of electrons. This movement will
continue until separation of the electrons and ions gives rise to an internal
electric field in the plasma,

1
E=——(w XH), (13.38)
C

which will compensate the field (13.36). We insert equation (13.38) into the
Maxwell equation —dH /gt = ¢ curl E, which yields

oH
6—1‘ = curl(we X H) (1339)
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We shall analyze the variation of the magnetic field and the plasma
motion when the electric current is due to electrons and the plasma conduc-
tivity is high. We transform equation (13.39) by writing curl(w, X H) =
w, div H+ (H-V)w, — (w,- V)H — H div w,. Using the Maxwell equation
div H = 0, and taking the expression for div w, from the continuity equation
for electrons, we obtain

JH H JN,

at N, at

+ (w,-V)H - %(WE'V)NE = (H-V)w,. (13.40)

We divide this equation by N, and find that

d(H H
E(E) _ (V'V)We’ (13.41)

d[H d(H
di\N,[  ar|N,
is the derivative at a point that moves with the plasma.

To analyze the motion of an element of plasma volume with length d1 and
cross section ds containing N, ds d| electrons, we assume at first that the
vector dl is parallel to the magnetic field H so that the magnetic flux through
this elementary plasma volume is Hds. If the plasma velocity at one end of
the segment dl is w,, then at its other end the velocity is w, + (d1- V)w,, so

that the variation of the segment length during a small time interval 8¢ is
8t (dl- V)w,. Hence, the length of the segment satisfies the equation

where

H
+ (W, V)

e

d =
- (d) = (d1-V)w,,

which is identical to equation (13.41). From this it follows: first, that in the
course of plasma evolution the segment dl has the same direction as the
magnetic field; and, second, that the length of the plasma element remains
proportional to the quantity H/N,, that is, the magnetic flux through this
plasma element does not vary with time during the plasma motion. Thus, the
magnetic lines of force are frozen into the plasma, that is, their direction is
such that the plasma electrons travel along these lines. Remember that this is
the case when the plasma conductivity is high.

To find the steady-state motion of a high-conductivity plasma, we start
with equation (13.38), which gives the force on each plasma electron as

e 1
F= —¢E=— X H) = ——(j X H).
¢E = Z(w X H) = == (i X H)
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Inserting into the expression for the force the current density j =
(¢ /47 )curl H, we obtain

1
—VH? - (H-V)H]|.

1
F= ——(jxH) =
CNE(.I ) 5

(H X curlH) =

47N, 47N

€

(13.42)

We now substitute equation (13.42) into the second equation of the set
(13.35), and we assume that the drift velocity of the electrons is considerably
smaller than their thermal velocity. Hence, we can neglect the term (w, - V)w,
compared to the term Vp /(mN,), and obtain

Hz)_(H~V)H

Vip+ — = 0. 13.4
p 87 4 ( 3)

The quantity H?/(87) is called the magnetic field pressure or magnetic
pressure; it is the pressure that the magnetic field exerts on the plasma.

13.11 PINCH EFFECT

We next analyze the properties of a cylindrical plasma column maintained by
a direct current. Here the magnetic lines of force are cylinders, and because
of the axial symmetry, equation (13.43) for the direction perpendicular to the
field and current has the form

v

H*? 0
+—|=0.
P 8

The solution of this equation shows that the total pressure p + H2/(8m),
which is the sum of the gas kinetic pressure and the magnetic field pressure,
is independent of the transverse coordinate. Let the radius of the plasma
column be a and the current in it be I, so that the magnetic field at the
surface of the column is H = 21 /(ca). The total pressure outside the column
near its surface is equal to the magnetic field pressure /2/(2mc?a?), and the
total pressure inside the plasma column is equal to the gas kinetic pressure p.
Equating these two pressures, we find the radius of the plasma column to be

I
“T o ap

An increase in the current of the plasma column is accompanied by a
corresponding increase in the magnetic field, which gives rise to a contraction
of the plasma column. This phenomenon is called the pinch effect, and the
state of the plasma column itself is known as z-pinch.

(13.44)
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13.12 SKIN EFFECT

To consider the penetration of slowly varying fields into a plasma, we take
the characteristic frequency of these fields to be small compared to the
plasma frequency w,. Ohm’s law for the plasma has the simple form

j=2E,

where j is the current density in the plasma, E is the electric field strength,
and 3 is the plasma conductivity. For the description of the field variation in
the plasma, it is necessary to add the Maxwell equations

4 1 0E 1 oH ]
curlH= —j— ——, curlE = — — —, divH=20
c c Jdt c oJt

to Ohm’s law, where H is the magnetic field strength.

Assume the typical frequency @ of variation of the external fields to be
small compared to the plasma conductivity 2, so that the first Maxwell
equation has the form curl H = 47 3E /c. Using this in the second Maxwell
equation and taking the third one into account, we obtain

JH c?
gt 4mw3

AH. (13.45)

The equation for the electric field has a similar form. From this equation,
one can find that a typical size corresponding to the field distribution under
the conditions considered is

C2

[ ~ .
47w

(13.46)

If this size is small compared to a plasma size, external fields are concen-
trated near the plasma surface in a layer of a depth ~/ and do not
penetrate inside the plasma. This phenomenon is called the skin effect, and
the layer into which external fields penetrate is called the skin layer. Accord-
ing to Eq. (13.46), the thickness of the skin layer decreases with increasing
plasma conductivity and increasing frequency of variation of the fields.

A numerical example of the skin effect can be given for the plasma of the
Earth’s ionosphere at an altitude of about 100 km. The plasma conductivity is
3 ~ 10° Hz and the plasma frequency is w, ~3 X 107 Hz. For frequencies
of the order of the plasma frequency, the penetration depth is of the order of
1 m. Electromagnetic waves with frequencies smaller than the plasma fre-
quency cannot pass through the Earth’s ionosphere.
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13.13 RECONNECTION OF MAGNETIC LINES OF FORCE

In a cold plasma of high conductivity, magnetic lines of force are frozen in
the plasma. This means that internal magnetic fields support electric currents
inside the plasma. But plasma motion and the interaction of currents may
cause a short circuit of some currents. This leads to an instability referred to
as the reconnection of magnetic lines of force. As a result of this process, the
energy of the magnetic fields is transformed into plasma energy in an
explosive process that generates plasma fluxes. This phenomenon is observed
in solar plasmas. Various solar plasma structures, such as spicules and
prominences, result from this phenomenon.

We consider first a simple example, where there are two antiparallel
currents of amplitude 7 located a distance 2a apart, and with length / > a.
We assume these currents have transverse dimensions small compared to a.
Taking the z-axis along the direction of the currents, taking the plane of the
currents to be xz, and placing the origin of the coordinates midway between
the currents, we find the magnetic field strength at distances r < [ from the
origin to be

El

1 1
H =H +
Oy((x—a)2 + y? ()r+a)2 + y?

H, =

’

B ( xX—a x+a
(

2 2+ 2 2
x—a) +y (x+a) +y

where H, = 21 /(ca). From this it follows that the energy released from
reconnection of these currents can be estimated to be

H? 1%l
e= | —dr~ —.
87 c-

This means that the released energy per unit length of the conductors is
constant near them.

This estimate can be used for understanding the general properties of a
turbulent plasma of high conductivity in a magnetic field. The plasma is
characterized by a typical drift velocity v of the electrons and a typical length
Ar over which this velocity varies. The energy of this plasma is contained
both in the plasma motion and in its magnetic fields, which are of the order
of H ~ eN,v/(c Ar), where N, is the number density of electrons. As a result
of reconnection of magnetic lines of force and reclosing of currents, transfor-
mation of the plasma magnetic energy into energy of its motion takes place,
followed by a reverse transformation. In the end, these forms of energy will
be transformed into heat. A typical time of reconnection is 7~ A r/v. This



224 PLASMA IN EXTERNAL FIELDS

= K

(a)

Figure 13.3 Reconnection of magnetic lines of force: (a) before reconnection; (b)
after reconnection. A dark plasma that occurs as a pulse as a result of the reconnec-
tion moves in two opposite directions perpendicular to the lines of force.

plasma can be supported by external fields. Figure 13.3 gives an example of
reconnection of magnetic lines of force. Released energy is transferred to a
plasma and generates intense plasma flows. This phenomenon is of impor-
tance for the Sun’s plasma. Then the resulting plasma flow inside the Sun
creates a shock wave that is responsible for generation of X-rays. The plasma
flows outside the Sun generate a hot plasma in the Sun’s corona.



CHAPTER 14

INSTABILITIES OF EXCITED GASES

14.1 CONVECTIVE INSTABILITY OF GASES

Currents in a plasma lead to its heating, and thus cause new forms of gas
motion that support the heat transport. Such heat transport provided by
gas flows is called convection. It consists of the movement of streams of hot
gas to a cooler region and streams of cold gas to a warmer region. Conditions
for the development of this heat transport mechanism will be considered
below.

To find the stability conditions for a gas with a temperature gradient
dT/dz oriented in the same direction as an external force field, we assume
the gas to be in equilibrium with this external force. If the external force is
directed along the negative z-axis, the number density of gas molecules
decreases with increase of z. We consider two elements of gas of the same
volume located a distance dz from each other, and calculate the energy
required for an exchange of their positions. The mass of the element with the
smaller z-coordinate is larger by AM than that with the larger coordinate, so
the work required for the exchange is AMgdz, where g is the force per unit
mass exerted by an external field. We neglect heat conductivity in this
analysis. The gas element initially at larger z has its temperature increased by
AT as a result of the exchange, and the element initially at smaller z is
cooled by the same amount. Hence the heat energy taken from the gas as a
result of the transposition of the two elements is C, AMdT = c, AMdT/m,
where C, is the heat capacity of the gas per unit mass and ¢, is the heat
capacity per molecule, so that m is the molecular mass. An instability
criterion requires that the above exchange of gas elements be energetically

225
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advantageous, and has the form

dT  mg
> —. (14.1)

dz ¢,

In particular, for atmospheric air subjected to the action of the Earth’s
gravitational field, this relation gives (g = 10* em/s?, ¢, = 7)

—dT 10 K/km 142
> . ‘
dz / ( )

The criterion (14.1) is a necessary condition for the development of
convection, but its being satisfied does not mean that convection will neces-
sarily occur. Indeed, if we transfer an element of gas from one point to
another, it is necessary to overcome a resistive force that is proportional to
the displacement velocity. The displacement work is proportional to the
velocity of motion of the gas element. If this velocity is small, the gas element
exchanges energy with the surrounding gas in the course of motion by means
of the thermal conductivity of the gas, and this exchange is larger the more
slowly the displacement proceeds. From these arguments it follows that the
gas viscosity and thermal conductivity determine the nature of the develop-
ment of convection. We shall develop a formal criterion for this process.

14,2 THE RAYLEIGH PROBLEM

If a motionless gas is to be unstable, small perturbations are able to cause a
slow movement of the gas that corresponds to convection. Our goal is to find
the threshold for this process and to analyze its character. We begin with the
simplest problem of this type, known as the Rayleigh problem. The configura-
tion of this problem is that a gas, located in a gap of length L between two
infinite plates, is subjected to an external field. The temperature of the lower
plate is 7|, the temperature of the upper plate is 7,, and the indices are
assigned so that T}, > T,.

We can write the gas parameters as the sum of two terms, so that the first
term refers to the gas at rest and the second term corresponds to a small
perturbation due to the convective gas motion. Hence the number density of
gas molecules is N + N’, the gas pressure is p, + p/, the gas temperature is
T + T, and the gas velocity w is zero in the absence of convection. When we
insert the parameters in this form into the stationary equations for continuity
(9.5), momentum transport (9.8), and heat transport (10.19), the zero-order
approximation yields

Vp,= —-FN, AT=0, w=0,
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where F is the force acting on a single gas molecule, and A is the Laplacian.
The first-order approximation for these equations gives

V(p, +p') nAw

N+N  N+N

T7,-T, K
2T L T ¢ N

+F =0,
(14.3)
AT'.

w

The parameters of the present problem are used in the last equation. The
z-axis is taken to be perpendicular to the plates.

We transform the first term in the first equation of (14.3) with first-order
accuracy, and obtain

V(ipo+p') Vb 2 Vp, N

= + —_—_—
N+ N’ N N NN
N\ Vp
=F[1- —|+—.
( N N

According to the equation of state (9.14) for a gas, N =p/T, we have
N'=(gN/dT),T' = —NT'/T. Inserting this relation into the second equa-
tion of (14.3), we can write this set of equations in the form

divw =0,

A\ 4 T Aw
S S LY (14.4)
N T N

kL AT
W, = ————————— .
T ooN(T, - T)
We can reduce the system (14.4) to an equation of one variable. For this goal
we first apply the div operator to the second equation of (14.3) and take into
account the first equation of (14.3). Then we have
Ap._ FoT 0 14.5
N  Toz (14.5)

Here we assume that 7, — T, < T;. Therefore, the unperturbed gas parame-
ters do not vary very much within the gas volume. We can neglect their
variation and assume the unperturbed gas parameters to be spatially
constant.
Take w, from the third equation of (14.4) and insert it into the z-compo-
nent of the second equation. Applying the operator A to the result, we obtain
1 ¢ FAT' nxL

——Ap — + AT = 0.
b T CVNZ(TZ_TI)
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Using the relation (14.5) between Ap' and 7', we obtain finally

AT K A o T 14.6
L dzr ]’ (14.6)
where the dimensionless combination of parameters
R (T, = T,) cy, FN2L?
B nkT

(14.7)

is called the Rayleigh number.

The Rayleigh number is fundamental for the problem we are considering,.
We can rewrite it in a form that conveys clearly its physical meaning.
Introducing the kinematic viscosity v = n/p = n/(Nm), where p is the gas
density, the thermal diffusivity coefficient is y = x/(Nc, ), and the force per
unit mass is g = F/m, the Rayleigh number then takes the form

T, - T, gl?
T vy

(14.8)

This expression is couched in terms of the primary physical parameters that
determine the development of convection: the relative difference of tempera-
tures (T, — T,)/T,, the specific force g of the field, a typical system size L,
and also the transport coefficients, taking into account the types of interac-
tion of gas flows in the course of convection. Note that we use the specific
heat capacity at constant volume (c,) because that is the condition that
obtains in our investigation. If equilibrium is maintained instead at a fixed
external pressure, it is necessary to use the specific heat capacity at constant
pressure in the above equations.

Equation (14.6) shows that the Rayleigh number determines the possibility
of the development of convection. For instance, in the Rayleigh problem the
boundary conditions at the plates are 7' = 0 and w, = 0. Also, the tangential
forces ndw,/dz and ndw,/dz are zero at the plates. Differentiating the
equation divw = 0 with respect to z and using the conditions for the
tangential forces, we find that at the plates ¢°w,/dz? = 0. Hence we have
the boundary conditions

Denote the coordinate of the lower plate by z = 0 and the coordinate of
the upper plate by z = L. A general solution of Eq. (14.6) with the stated
boundary conditions at z = 0 can be expressed as

T' = Cexp[i(k.x + k,y)| sink,z. (14.9)
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The boundary condition 7' = 0 at z = L gives k,L = wn, where n is an
integer. Inserting the solution (14.9) into Eq. (14.6), we obtain

(k*L? + 72n?)’
B k212 ’

(14.10)

where k% = k2 + k2. The solution (14.9) satisfies all boundary conditions.

Equation (14.10§ shows that convection can occur for values of the
Rayleigh number not less than R, where R, refers to n =1 and
kw = m/(LV2). The numerical value of R, is

min

R, = 27m*/4 = 658.

The magnitude of R, can vary widely depending on the geometry of the
problem and the boundary conditions, but in all cases the Rayleigh number is
a measure of the possibility of convection. Above we have considered the
simplest example of generation of the convective motion that does not relate
to real gases but exhibits the threshold character of the convective motion
and allows us to examine the physical nature of this phenomenon.

14.3 CONVECTIVE MOVEMENT OF GASES

To gain some insight into the nature of convective motion, we consider the
simple case of motion of a gas in the xy plane. Inserting the solution (14.9)
into the equation divw = dw_/dx + dw,/dz = 0, the components of the gas
velocity are
. mnz m™Tn mThz
W, = W, €OS kx sin 7 We= = 77" sin kx cos 7 (14.11)
where n is an integer, and the amplitude w, of the gas velocity is assumed to
be small compared to the corresponding parameters of the gas at rest. In
particular, w,, is small compared to the thermal velocity of the gas molecules.
The equations of motion for an element of the gas are dx/df = w, and
dz/dt = w,, where Eq. (14.11) gives the components of the gas velocity. We
obtain dx/dz = —[mwn /(kL)ltan(kx)cot(mnz /L). This equation describes the
path of the gas element. The solution of the equation is

sin(kx)sin(mwnz/L) = C, (14.12)

where C is a constant determined by the initial conditions. This constant is
bounded by —1 and +1; its actual value depends on the initial position of
the gas element. Of special significance are the lines at which C = 0. These
lines are given by the equations

z=1Lp,/n, x=Lp,/n, (14.13)



230 INSTABILITIES OF EXCITED GASES

Figure 14.1 Paths of gas elements in the Rayleigh problem for n = 1, k = w/L.

where p, and p, are nonnegative integers. The straight lines determined by
Eq. (14.13) divide the gas into cells. Molecules inside such a cell can travel
only within it. Indeed, Eq. (14.13) shows that the component of the gas
velocity directed perpendicular to a cell boundary is zero; that is, the gas
cannot cross the boundaries between the cells. These cells are known as
Benard cells.

Equation (14.13) shows that inside each cell the gas elements travel along
closed paths around the cell center where the gas is at rest. Figure 14.1 shows
the path of the elements of gas in the Rayleigh problem for n =1 and
k = w/L, corresponding to the Rayleigh number R = 87* = 779. In the
Rayleigh problem, the Benard cells are pyramids with regular polygons as
bases; in the general case, these cells have a more complicated structure.

14.4 CONVECTIVE HEAT TRANSPORT

Convection is a more effective mechanism of heat transport than is thermal
conduction. We can illustrate this by examining convective heat transport for
the Rayleigh problem. There will be a boundary layer of thickness & formed
near the walls, within which a transition occurs from zero fluid velocity at the
wall itself to the motion occurring in the bulk of the fluid. The thickness of
the boundary layer is determined by the viscosity of the gas, and the heat
transport in the boundary layer is accomplished by thermal conduction, so
that the heat flux can be estimated to be ¢ = —«VT ~ «(T, — T,)/8.
Applying the Navier—Stokes equation (10.32) to the boundary region, one can
estimate its thickness. This equation describes a continuous transition from
the walls to the bulk of the gas flow. We now add the second term in the
Navier-Stokes equation, m(w - V)w, which cannot be neglected here, to the
expression in Eq. (14.3) . An order-of-magnitude comparison of separate
terms in the z-component of the resulting equation yields mw?/8 ~
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F(T, — T,)/T ~ qw,/N8*. Hence, we find that the boundary-layer thickness
is

5 T " 14.14
N Fm¥ T, - T,) | (14.14)

In the context of the Rayleigh problem, we can compare the heat flux
transported by a gas due to convection (¢g) and to thermal conduction (g g, ).
The thermal heat flux is ¢4 = (T, — T,)/L, and the ratio of the fluxes is

q L (NZFmU(T1 - T,

— T,ZT

) 1/3
~ G, (14.15)
9cond 5 )

Here, G is the dimensionless combination of parameters

N2FmL¥(T, - T,) AT gL’

n’T T v?’

(14.16)

which is called the Grashof number. A comparison of the definitions of the
Rayleigh number (14.7) and the Grashof number (14.16) gives their ratio as
R c¢yn v
G mk x

The continuity equation (9.5), the equation of momentum transport (9.8),
and the equation of heat transport (10.19) are valid not only for a gas but
also for a liquid. Therefore, the results we obtain are applicable to liquids
also. However, a gas does have some distinctive features. For example,
Egs. (10.18) and (10.29) show that for a gas the ratio n/(m«k) is of order
unity. Furthermore, the specific heat capacity ¢,, of a single molecule is also
of order unity. Hence, the Rayleigh number has the same order of magnitude
as the Grashof number for a gas. Since convection develops at high Rayleigh
numbers, we find that for convection G > 1. Therefore, according to Eq.
(14.15), we find that heat transport via convection is considerably more
effective than heat transport in a motionless gas via thermal conduction.

The ratio (14.15) between the convective and conductive heat fluxes has
been derived for an external force directed perpendicular to the boundary
layer. We can derive the corresponding condition for an external force
directed parallel to the boundary layer. We take the z-axis to be normal to
the boundary layer and the external force to be directed along the x-axis.
Then, to the second equation of the set of equations (14.3), we add the term
m(w - V)w and compare the x-components of the result. This comparison
yields

mw?  F(T, - T,)

x

L T

w.l‘
8%

~

(14.17)

z|=3
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Equation (14.17) gives the estimate

. n?TL 1/4
N2Fm3(T, — T,)

for the thickness of the boundary layer. Hence, the ratio of the heat flux ¢
due to convection to the flux ¢, due to thermal conduction is

q L 1/4
P G'*. (14.18)
cond

The ratio of the heat fluxes in this case is seen to be different from that
when the external force is perpendicular to the boundary layer [see Eq.
(14.15)]. However, the convective heat flux in this case is still considerably
larger than the heat flux due to thermal conduction in a motionless gas.

14.5 INSTABILITY OF CONVECTIVE MOTION

New types of convective motion develop when the Rayleigh and Grashof
numbers become sufficiently large. The orderly convective motion becomes
disturbed, and this disturbance grows until the stability of the convective
motion of a gas is entirely disrupted, giving rise to disordered and turbulent
flow of the gas. This will happen even if the gas is contained in a stationary
enclosure. To analyze the development of turbulent gas flow we consider
once again the Rayleigh problem: a gas at rest between two parallel and
infinite planes maintained at different constant temperatures is subjected to
an external force. We shall analyze the convective motion of a gas described
by Egs. (14.11) and corresponding to sufficiently high Rayleigh numbers with
n > 2. In this case there can develop simultaneously at least two different
types of convection.

Figure 14.2 shows two types of convective motion for the Rayleigh number
R = 1087*, corresponding to the wave number k, = 9.4/L for n = 1 and
to k, = 4.7/L for n = 2. To analyze this example using the above parame-
ters, we combine the solutions so that the gas flows corresponding to n = 1
and to n = 2 travel in the same direction in some region of the gas volume.
Then in other regions these flows must move in opposite directions. The
existence of two solutions with opposite directions of gas flow does not mean
that the ordered flow of gas is disturbed. A combination of two solutions is
itself a solution. For opposite gas flows, a combination means that at some
points the gas is motionless. Nevertheless, the fact that an increase of the
Rayleigh number gives rise to new types of solutions means that the convec-
tive flow can become turbulent. Assume that there is an ordered convective
flow in the system corresponding to one of the solutions. Then a small
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Figure 142 The types of convective motion in the Rayleigh problem for R = 10874,
The mixing of the gas fluxes traveling in opposite directions finally results in a random
gas motion, or turbulence. Regions of counter — currents are marked.

perturbation in one of the regions of the gas volume gives rise to a different
type of flow. At the boundary of this region two opposite gas flows meet, so
that the kinetic energy of motion of the gas is transformed into thermal
energy of the gas. This results in disordered motion. The development of
turbulence changes altogether the character of heat transport.

We can estimate the thermal conductivity coefficient in a plasma or hot
gas with developed turbulence. For example, turbulent flow can occur in a
column of hot gas resulting from the passage of an electric current through it,
and the temperature evolution of this column is of interest. We add the force
of an external field directed perpendicular to the temperature gradient (as in
the case of lightning in air), so that the transport of heat occurs over small
distances. We assume that a typical transverse size r of the column is large
compared to a typical size / of small vortices, as determined by Egs. (14.8)
and (14.10), giving

AT gl* 1 gP

— 10°.
T vy rouy

In this case the thermal conductivity coefficient is given by Eq. (10.18),
k ~ Nul, where [ is the mean free path for vortices and v is a typical velocity
in the fluxes. The value of v is obtained from the Navier—Stokes equation
(10.32) as v ~ (gl)'/%. The Reynolds number Re = vl/v for these motions
can be estimated from the above expression for the Rayleigh number,
yielding

I v
R =-—Re?~10%
rx
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Since I << r and v ~ y, it follows that Re > 1. Thus, at large values of the
Rayleigh number when several types of motion of gaseous flows are possible,
the movement of the gas is characterized by large values of the Reynolds
numbers. As these numbers increase, the gas motion tends toward disorder,
and turbulent motion develops.

14.6 THERMAL EXPLOSION

We shall now consider the other type of instability of a motionless gas, which
is called thermal instability or thermal explosion. It occurs in a gas experienc-
ing heat transport by way of thermal conduction, where the heat release is
determined by processes (chemical, for instance) whose rate depends strongly
on the temperature. There is a limiting temperature beyond which heat
release is so rapid that thermal conductivity processes cannot transport the
heat released. Then an instability occurs that transforms internal energy of
the system to heat and leads to a different regime of heat transport.

We shall analyze this instability within the framework of the geometry of
the Rayleigh problem. Gas is located in a gap between two infinite plates
with a distance L between them. The wall temperature is 7,,. We take the
z-axis perpendicular to the walls with z = 0 at the center of the gap, so that
the coordinates of walls are z = +L /2. We introduce the specific power of
heat release f(T) as power per unit volume and use the Arrhenius law

f(T)y=Aexp(—-E,/T), (14.19)

for the temperature dependence of this value, where E, is the activation
energy of the heat release process. This dependence of the rate of heat
release is identical to that of the chemical process and represents a strong
temperature dependence because E, > T,

To find the temperature distribution inside a gap in the absence of the
thermal instability, we note that Eq. (10.19) for the transport of heat has
the form

d2

K

— +f(T) = 0.

We introduce a new variable X = E(T — T,)/T3, where T, is the gas
temperature at the center of the gap, and obtain the equation

d*X/dz> — Be™* =0,

where B = E, Aexp(—E, /T,)/(Ti«). Solving this equation with the bound-
ary conditions X(0) = 0, dX(0)/dz = 0 [the second condition follows from
the symmetry X(z) = X(—z) in this problem], we have

X = 2Incosh z.
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The temperature difference between the center of the gap and the walls is

AT=T,-T 2T021 hL AL, Eq 14.20
=To = Ty =g~ Incosh) 54/ o exp| = o || (14:20)

To analyze this expression we refer to Fig. 14.3, illustrating the depen-
dence on T, for the left-hand and right-hand sides of this equation (curves 1
and 2, respectively) at a given 7,,. The intersection of these curves yields the
center temperature T;,. The right-hand side of the equation does not depend
on the temperature of the walls and depends strongly on T,. Therefore it is
possible that curves 1 and 2 do not intersect. That would mean there is no
stationary solution of the problem. The physical implication of this result is
that thermal conduction cannot suffice to remove the heat release inside the
gas. This leads to a continuing increase of the temperature, so that thermal
instability occurs.

To find the threshold of the thermal instability corresponding to the curve
1 of Fig. 14.3, we establish the common tangency point of the curves
describing the left-hand and right-hand sides of Eq. (14.20). The derivatives
of the two sides are equal when

2T¢
AT = £ Incosh y, 1 =ytanhy, (14.21)

where
L AE

a Ea
Y=V 2 P\ 2r, )

The solution of the second equation in (14.21) is y = 1.2, so that
AE, L? (
exp

E, T¢
——] =115 and AT=1.19—. (14.22)
T, E

Ték

a

Figure 14.3 The dependence of the
left-hand (curve 1) and right-hand (curve
2) sides of equation (14.20) on the
temperature of the center. The wall
temperature T corresponds to the
threshold of the thermal instability.
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From this, it follows that the connection between the specific powers of heat
release is

A(T,) = f(Ty)e™ " = 0.30f(T,).

This makes it possible to state the condition for the threshold of thermal
instability in terms of the parameters of heat release on walls as

L*AE, E,
T2 exp| — | = 35. (14.23)
wkK

w

Though we referred to the Arrhenius law for the temperature dependence
of the rate of heat release, in actuality we used only the implication that this
dependence is strong. We can therefore rewrite the condition for the thresh-
old of thermal instability in the form

LZ

K

df(T,)
dT,

=35. (14.24)

The criterion for a sharp peak in the power involved in the heat release is

df(T,)
dT,

> 1. (14.25)

w

The relation (14.24) has a simple physical meaning. It relates the rate of
the heat release process to the rate of heat transport. If their ratio exceeds a
particular value of the order of unity, then thermal instability develops.

14.7 THERMAL WAVES

The development of thermal instability can lead to the formation of a thermal
wave. This takes place if the energy in some internal degree of freedom is
significantly in excess of its equilibrium value. For example, it can occur in a
chemically active gas or in a nonequilibrium molecular gas with a high
vibrational temperature. In these cases the development of thermal instabil-
ity is accompanied by the propagation of a thermal wave, leading to a rapid
chemical reaction or to a vibrational relaxation.

Figure 14.4 shows the temperature distribution in a gas upon propagation
of a thermal wave. Region 1 has the initial gas temperature. The wave has
not yet reached this region at the time represented in the figure. The
temperature rise observed in region 2 is due to heat transport from hotter
regions. The temperature in region 3 is close to the maximum. Processes that
release heat occur in this region. We use the strong temperature dependence
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Figure 14.4 The temperature distribution in a gas in which a thermal wave
propagates.

to establish the specific power of heat release, which according to (14.19) has
the form

AT) =f(T)exp[-a(T, - T)], a=E/T;  (14.26)

Here T, is the final gas temperature, determined by the internal energy of
the gas. Region 4 of Fig. 14.4 is located after the passage of the thermal
wave. Thermodynamic equilibrium among the relevant degrees of freedom
has been established in this region.

To calculate parameters of the thermal wave, we assume the usual
connection between spatial coordinates and time dependence of propagating
waves. That is, the temperature is taken to have the functional dependence
T = T(x — ut), where x is the direction of wave propagation and u is the
velocity of the thermal wave. With this functional form, the heat balance
equation (10.19) becomes

dT  &’T  f(T)
— + x—— + =
Yac "X T e N

0. (14.27)

Our goal is to determine the eigenvalue u of this equation. To accomplish
this, we employ the Zeldovich approximation method, which uses a sharply
peaked temperature dependence for the rate of heat release. We introduce
the function Z(T) = —dT /dx, so that for T, < T < T,, we have Z(T) > 0.
Since we have the connections

dx

d*T d (dT Zdz
2 dx )_

de? dT ’
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A ~dTidx

47

To T

m

Figure 14.5 The solution of equation (14.28) for various regions of the thermal wave
of Fig. 14.4,

Eq. (14.27) takes the form

—uZ + Ed—z + 1) =0 (14.28)
Xar T e, N T '

The solution of this equation for the regions defined in Fig. 14.4 is illustrated
in Fig. 14.5. Before the thermal wave (region 1) and after it (region 4), we
have Z = 0. In region 2 there is no heat release, and one can neglect the last
term of Eq. (14.28). This yields

Z=u(T-T,)/x- (14.29a)
Neglecting the first term of Eq. (14.28), we obtain

2 1
Z= \/c,,Nxfr f(T) dT (14.29b)

for region 3. Equations (14.29a) and (14.29b) are not strictly joined at the
interface between regions 2 and 3, because there is no interval where one can
neglect both terms of Eq. (14.28). But due to the very strong dependence of
f(T) on T, there is only a narrow temperature region where it is impossible
to neglect one of these terms. This fact allows us to connect solution (14.292)
with (14.29b) and find the velocity of the thermal wave.

Introducing the temperature T, that corresponds to the maximum of
Z(T), Eq. (14.28) gives

ATy)

ucpN

Z.. =Z(T,) =

Equation (14.28) for temperatures near T, then takes the form

dZ_u(la f(T))
ATy |

dT x
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Solving this equation and taking into account Eq. (14.26), we have
zZ ‘ T-T ¢ [a(T-T 14.29
= —(1=T) - —ewpla(T- Tl (142%)

The boundary condition for this equation is that it should coincide with
(14.29a) far from the maximum Z. In this region one can neglect the third
term of Eq. (14.28), which is the approximation that leads to Eq. (14.29a).
This is valid under the condition

a(T, — T,) > 1. (14.30)

Now we seek the solution of Eq. (14.28) at T > T,.. Near the maximum of
Z(T), Z is given by Eq. (14.29¢), so (14.28) has the form

dZ max

This equation is valid in the region where the second term of Eq. (14.29¢) is
significantly smaller than the first one. According to Eq. (14.30), this condi-
tion is fulfilled at temperatures where expl a(T — T,)] > 1. Therefore, due
to the exponential dependence of the second term of Eq. (14.28), there is a
temperature region where that term gives scant contribution to Z, but
nevertheless determines its derivative. This property will be used below. On
the basis of the above information and the dependence given in Eq. (14.26),
we find that the solutions of (14.28) at T > T, are

2f(T,
L [21(T)
¢, Nxa

Y1 —expla(T - T,)],

z _ |2)(T,) ew[e(T - T,)]
dT | c,Nxa /T —exp[a(T-T,)]

Comparing the expressions for dZ/dT near the maximum, one can see
that these expressions can be connected if the condition stated in Eq. (14.30)
is satisfied. Then the solution (14.29b) is valid in the temperature region
T, <T<T, up to temperatures near the maximum of Z. Connecting
values of dZ/dT in regions where a(T — T,) > 1 and where a(T,, — T)
> 1, we obtain

[25(T,
Zmax = cfg\/)(a) (T* - Tm)exp [a(T* - Tm)]
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Next, from (14.29¢) it follows that Z, = Z(T,) = f(T,)/(uc,N). Compar-
ing these expressions, one can find the temperature 7, corresponding to the
maximum of Z(T) and hence to the velocity of the thermal wave. We obtain

a(Ty = Ty)/2 = exp[a(T,, — T4)], (14.31)

T, |2xf(T,
u= Xf(Tn) (14.32)
Tm - TQ CPNE‘a

We have used Eq. (14.26) for the parameter a. The relation (14.31) together
with the condition (14.30) gives 7, — T, < T, — T,. This was taken into
account in Eq. (14.32).

Equation (14.32) corresponds to the dependence (14.26) for the rate of
heat release near the maximum. In a typical case at T = T,, all the “fuel” is
used, and f(T,,) = 0. Then all the above arguments are valid, because the
primary portion of the heat release takes place at temperatures 7 where
a(T,, — T) ~ 1, that is, where o(T — T,) > 1. Then, using the new form of
the function f(T) near the maximum of Z(T), we transform Eq. (14.32) to
the form

1 2x 1,
=——/—= | "f(T)dT. 143
u Q_RV%NLK) (1433)

This formula is called the Zeldovich formula.

We can analyze the problem from another standpoint. Take an expression
for Z(T) such that, in the appropriate limits, it would agree with Egs.
(14.29a) and (14.29b). The simplest expression of this type has the form

Z= (=11 - el —a(T, - D))}

Inserting this into Eq. (14.28), f(T) is given by the expression

f(T) =u2—5122

cpN 2dT

2

u
= —(T—TyV1—e*Tn D (1 = Y1 — e eTa 1))

X

2

au 2 -
+2_)((T_ TO) e Tn=T),

In the region «(T — T) > 1, the first term is small compared to the second
one and one can neglect it. Then the comparison of this expression with that
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of Eq. (14.26) in the temperature region a(7,, — T)~land T, - T <« T,
— T, gives the velocity of the thermal wave as (where a = E, /T?)

T [ (T
T,-T,| E, ¢c,N

This equation agrees exactly with Eq. (14.32) because of the identical
assumptions used for construction of the solution in both cases.

One can use this method for the alternative case when the function f(T)
has an exponential dependence far from 7,, and goes to zero at T = T, . For
example, take the approximate dependence

f(T) =A(Tm - T)exp[_a(Tm - T)]

An approximate solution of Eq. (14.28) constructed on the basis of Eqgs.
(14.29a) and (14.29b) has the form

zZ= %(T— To)1 —e T D[a(T, - T) + 1] .

Substituting this in Eq. (14.28), we have

f(T) x d
=uZ - =—=27¢
oN T 2ar

e
- (T - T){1 =1 - e T D[a(T, - T) + 1]}

Xy1—e aTnD[a(T, - T) + 1]

2,,2

+ (T = T,)X(T, — T)e *Tn=D),

2x

In the region a(T — T,) > 1, where the heat release is essential, the first
term is small compared to the second one. Then comparing this expression
with the approximate dependence assumed above for f(T), we find the
velocity of the thermal wave (a = E, /T;?) to be

T2 2xA
Ea(Tm - TO) CpN .

U =

This result is in agreement with the Zeldovich formula (14.33) for the
dependence employed for f(T). The above analysis shows that the Zeldovich
formula for the velocity of a thermal wave is valid under the condition
a(T, — Ty) > 1.
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14.8 VIBRATIONAL-RELAXATION THERMAL WAVES

We shall apply the above results to the analysis of illustrative physical
processes. First we consider a thermal wave of vibrational relaxation that can
propagate in an excited molecular gas that is not in equilibrium. In particu-
lar, this process can occur in molecular lasers, where it can result in the
quenching of laser generation. We consider the case where the number
density of excited molecules is considerably greater than the equilibrium
density. Vibrational relaxation of excited molecules causes the gas tempera-
ture to increase, and the relaxation process accelerates. There will be a level
of excitation and a temperature at which thermal instability develops, leading
to the establishment of a new thermodynamic equilibrium between excited
and nonexcited molecules.

The balance equation for the number density N, of excited molecules has
the form

Ny
at

= DAN, — NN,k(T),

where N is the total number density of molecules, and where we assume
N > N, . The quantity D is the diffusion coefficient for excited molecules in
a gas, and k(T) is the rate constant of vibrational relaxation. Taking into
account the usual dependence of traveling-wave parameters N, (x, 1) = N, (x
— ut), where u is the velocity of the thermal wave, we transform the above
equation to the form

dN, d’N,
—— + D — NJNK(T) = 0. (14.34)

u

In front of the thermal wave we have N, = N,,,, and after the wave we have
N, = 0. That is, we are assuming the equilibrium number density of excited
molecules to be small compared to the initial density. Introduce the mean
energy Ae released in a single vibrational-relaxation event. Then the differ-
ence of the gas temperatures after (7,,) and before (7;) the thermal relax-

ation wave is

Ny Ae

b
Ncp

Tm—TOZ

where N, is the initial number density of excited molecules.
The heat balance equation (14.27) now has the form

dT d’T  Ae Nk(T) 0
—_— + —_ =
o T X c

p

(14.35)
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The wave velocity can be obtained from the simultaneous analysis of Egs.
(14.34) and (14.35). The simplest case occurs when D = y. Then both
balance equations are identical, and the relation between the gas tempera-
ture and the number density of excited molecules is

T, — T =N, Ag/(Nc,). (14.36)

We have only one balance equation in this case. Comparing it with Eq.
(14.27), we have f(T)/(c,N) = (T,, — T)Nk(T). On the basis of the Zel-
dovich formula we find the wave velocity to be

T} 2x
CE(T,-Ty) \ (T,

(14.37)

where 7(T,,) = 1/[Nk(T,)] is a typical time for vibrational relaxation at the
temperature T,,. Because of the assumption a(7,, — 7)) > 1 and the depen-
dence (14.26) for the rate constant of vibrational relaxation, the relation
(14.37) with the assumptions employed gives

U < _x .
V ~(T)

We shall now examine the propagation of a vibrational-relaxation thermal
wave for limiting relations between the parameters D and y. We analyze
first the case D > y. Figure 14.6a shows the distribution of the number
density of excited molecules (N, ) and of the gas temperature T along the
wave. We note that the centers of these two distributions coincide. This
reflects the fact that quenching of excited molecules introduces heat into
the gas.

We can analyze the balance equation (14.34) for the number density of
excited molecules in a simple fashion by neglecting thermal conduction. We
obtain the temperature distribution in the form of a step as shown in (Fig.
14.6a). At x > 0 the vibrational relaxation is weak, and the solution of Eq.
(14.34) in this region has the form N, = N,,, — (N, — Nydexp(—ux/D) if
x > 0, where N, is the number density of the excited molecules at x = 0 and
N, is the integration constant. In the region x < 0 vibrational relaxation is of
importance, but the gas temperature is constant. This leads to

u \? 1 u
N, = Nyexp(ax), x<0, a= (E) +E = 5D
where 7= 1/[Nk(T,)]. The transition region, where the gas temperature is

not at its maximum but the vibrational relaxation is essential, is narrow under
the conditions considered. Hence at x = 0 the above expressions must give
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Figure 14.6 The distribution of gas temperature and number density of excited
molecules in a vibrational-relaxation thermal wave for different limiting ratios be-
tween the diffusion coefficient D of excited molecules and the thermal diffusivity
coefficient y of the gas.

the same results both for the number density of excited molecules and for
their derivatives. We obtain

u

5o U= 1/ -7-2(% = V2DNKk(T,), D> x. (14.38)

In this case the propagation of the thermal wave of vibrational relaxation is
governed by the diffusion of excited molecules in a hot region where
vibrational relaxation takes place. Hence, the wave velocity is of the order of
u ~ D/t in accordance with Eq. (14.38). The width of the front of the
thermal wave is estimated as Ax ~ VDr.

The opposite limiting case y > D is shown in Fig. 14.6b, illustrating the
distribution of the gas temperature and number density of excited molecules
along the thermal wave for this case. Because at x > 0 the rate of vibrational
relaxation is small, and at x < 0 excited molecules are absent, one can
neglect the last term of Eq. (14.35). Assuming the transition region to be
small, Eq. (14.35) leads to the result

o =

T, + (T, — Ty) exp[—u(x +x0)/X], X > X,
T

m>?

T(x) = x < xq,
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where —x, is the back boundary of the thermal wave. This value can be
determined from the condition that the positions of the centers for the gas
temperature distributions and the number density of molecules are coinci-
dent; that is, the areas of the shaded regions of Fig. 14.6b must be the same.
This yields x, = x/u and

T(0) =T, = T,(1 — 1/e) + T, /e, (14.39)

where e is the base of Naperian logarithms. The wave velocity is determined
by the Zeldovich formula (14.33), where f(T) = Ae, Nk(T) and N, is the
step function. This allows one to take 7, as the upper limit of integration in
Eq. (14.33), leading to the result

Y= 1 2xf(T,)
T,-T,\| c,Nao

This formula, with Eqgs. (14.36) and (14.39), yields

=y 2e ik v/ X 14.40
Ve VBT, -1 V(T (14.40)

where 7(T) = [NK(T)] 'and a = E,/T?. Since a(T, — T;) > 1, we con-
clude that

u <y x/k(T) .

In this case the wave velocity is small compared to that for the case D = y,
because the vibrational-relaxation process proceeds at lower temperatures
and lasts longer than in the case D = y. Summing up the above results, we
point out that the vibrational-relaxation thermal wave is created by the
processes of diffusion of excited molecules in a gas, by thermal conductivity
of the gas, and by vibrational relaxation of excited molecules. Hence, the
wave velocity depends on the parameters D, y, and a typical time 7 of
vibrational relaxation.

14.9 OZONE-DECOMPOSITION THERMAL WAVES

Since the propagation of thermal waves is so complicated, including diverse
processes of transport and quenching of excited particles, we present here an
explicit example where ozone decomposition in air or other gases proceeds in
the form of a thermal wave. The propagation of the thermal wave results
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from chemical processes whose main stages are

kdis

0,+M-50,+0+M,
0+0,+M50,+M, (14.41)
Ky
0 + 0, =520,,

where M is the gas molecule, and the relevant rate constants of the processes
are given above the arrows. If these processes proceed in air, the tempera-
ture T, after the thermal wave is connected with the initial gas temperature
T, by the relation

T, = T, + 48c, (14.42)

where the temperatures are expressed in kelvins, and ¢ is the ozone concen-
tration in air expressed as a percentage.
On the basis of the scheme (14.41) we obtain the set of balance equations

d[Z” = —kg[M][0,] + K[O][0,][M] - &,[0][0;],
(14.43)
%(?)"] = ks [M][0;] = K[0][0,][M] - k,[O][0;],

where [X] is the number density of particles X. Estimates show that at a gas
pressure p <1 atm and T, > 500 K we have K[O,]M] < k,[O,], that is,
the second term of the right-hand side of each equation in (14.43) is smaller
than the third one. In addition, we know that [O] < [O,], so that d[O]/dt <
dlO,]/dt. This gives d[O]/dt = 0 and [O] = k, [MI]/k,. Using this result in
the first equation of (14.43), we obtain

d[O;]/dt = —2k 4, [M][O,].
Then, with Egs. (14.34) and (14.35), we obtain for the thermal wave

ud[03] N Dd2[023] ~ 2k, [M][0,] = 0,

dx dx
14.44
aT d*T ( )
uE + XW + ;—Aakdis[03] =0,

p

where Ae = 1.5 eV is the energy released from the decomposition of one
ozone molecule.

We can now substitute numerical parameters for the above processes for a
thermal wave in air at atmospheric pressure, namely D = 0.16 cm?/s and
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Figure 14.7 The velocity u of the thermal wave of ozone decomposition and the
width of the wave front (Ax) as a function of the final temperature.

x = 022 cm?/s. These quantities are almost equal numerically and have
similar temperature dependence, so we take them to be equal and given by

019( T y”s

D= = —_—- | ——
X 5 300

Here D and x are in cm?/s, the air pressure p is in atmospheres, and the
temperature is in kelvins. Next, we employ the expression kg, = (1.0 X 107°
cm?® /s) exp(— 11,600 /T) for the dissociation rate constant. We can observe
how equating the values of D and y simplifies the problem. Then Eq. (14.37)
gives the thermal wave velocity

1.372% 5800
TRl

m

where the initial (7},) and final (7,,) air temperatures are in kelvins, and the
thermal wave velocity is in centimeters per second. Figure 14.7 illustrates the
temperature dependence for the wave velocity with 7, = 300 K. Note that it
does not depend on the air pressure.
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The width of the wave front can be characterized by the value Ax =
(T, — T,)/(dT/dx),,,, where the maximum temperature gradient is
(dT/dx),,,, = u(T, — T,)/x and the temperature T, is determined by Eq.
(14.31). Figure 14.7 gives this value as a function of the temperature. From
the data of Fig. 14.7 one can see that the thermal wave velocity is small
compared with the sound velocity. This means that the propagation of a
thermal wave is a quiet process, in contrast to a shock wave.



CHAPTER 15

WAVES IN PLASMAS

156.1 ACOUSTIC OSCILLATIONS

Oscillations and noise in a plasma play a much greater role than in an
ordinary gas because of the long-range nature of charged-particle interac-
tions. If a plasma is not uniform and is subjected to external fields, a wide
variety of oscillations can occur. Under some conditions these oscillations can
become greatly amplified. Then the plasma oscillations affect basic plasma
parameters and properties. Below we analyze the simplest types of oscilla-
tions in a gas and in a plasma.

The natural vibrations of a gas are acoustic vibrations, that is, propagating
waves of alternating compressions and rarefactions. We shall analyze these
waves with the goal of finding the relationship between the frequency w of
the oscillation and the wavelength A, which is connected with the wave vector
k by the expression |k|= 27/A. It is customary to refer to the amplitude
k = |k| as the wave number.

In our analysis, we assume the oscillation amplitudes to be small. Thus any
macroscopic parameter of the system can be expressed as

A=A,+ Y A, expli(kx — wt)], (15.1)

where A, is an unperturbed parameter (in the absence of oscillations), 4, is
the amplitude of the oscillations, w is the oscillation frequency, and k is the
appropriate wave number. The wave propagates along the x-axis. Since the
oscillation amplitude is small, an oscillation at a given frequency does not
depend on oscillations at other frequencies. In other words, there is no

249
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coupling between waves of different frequencies when amplitudes are small.
Therefore, one need retain only the leading term in the sum (15.1) and
express the macroscopic parameter A4 in the form

A=Ay +Aexpli(ke — wt)]. (15.2)

To analyze acoustic oscillations in a gas, we can apply the relation (15.2) to
the number density N of gas atoms (or molecules), the gas pressure p, and
the mean gas velocity w, and take the unperturbed gas to be at rest (w, = 0).
Using the continuity equation (9.5) and neglecting terms with squared oscilla-
tion amplitudes, we obtain

oN' = kNw'. (15.3a)

The gas velocity w is directed along the wave vector k for an acoustic wave (a
longitudinal oscillation). Similarly, the Euler equation (9.15) in the linear
approximation leads to the expression

k
= ' 15.3b
ww mNop ( )

where m is the mass of the particles of the gas.
Equations (15.3) connect the oscillation frequency w and the wave number
by the relation

o = c.k, (15.4)

where the speed of sound ¢, is

7 1 ap
Vo =V = 15.5
s mN’ m oN ( )

An equation of the type (15.4) that connects the frequency w of the wave
with its wave number k is called a dispersion relation. We see that here the
group velocity of sound propagation, dw/dk, is the same as the phase
velocity w/k and does not depend on the sound frequency.

In order to find the sound velocity, it is necessary to know the connection
between variations of the gas pressure and density in the acoustic wave. For
long waves, the regions of compression and rarefaction do not exchange
energy during wave propagation. Hence this process is adiabatic, and the
parameters of the acoustic wave satisfy the adiabatic equation

pN™7 = const, (15.6)
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where y =c,/c, is the adiabatic exponent; where c, is the specific heat
capacity at constant pressure, and c,, is the specific heat capacity at constant
volume. From the expansion (15.2) the wave parameters are related by the
expression

P /py=YN'/Ny.

Because of the state equation (9.16) p, = N,T, where T is the gas tempera-
ture, we obtain p’/N' = dp/JIN = yT. Thus Eq. (15.4) yields

w=1 —k. (15.7)

The sound velocity is seen to be of the order of the thermal velocity of
gas particles.

The dispersion relation (15.7) is valid under adiabatic conditions in the
wave if a typical time 7 of heat transport in the wave is large compared to the
period of oscillations 1/w. Assuming the heat transport in the wave to be
due to thermal conductivity, we have 7 ~ r?/y ~ ( xk?)~', where a distance
r is of the order of the mean free path and x is the thermal diffusion
coefficient. From this we obtain the adiabatic criterion

w<cl/x, (15.8)

for the wave, where ¢, is the wave velocity. For example, in the case of air
under standard conditions (p = 1 atm), the condition (15.8) has the form
w < 5x10° s7'. Because x = x/(c,N) ~vy/A, and ¢, ~ vy, where A is
the free path length of gas molecules and v is a typical thermal velocity of
the molecules, the condition (15.8) may be rewritten in the form

Ak < 1.

That is, the wavelength of the oscillations is large compared to the mean free
path of the molecules of the gas.

15.2 PLASMA OSCILLATIONS

We want to analyze plasma oscillations that are due to the motion of charged
particles. In the simplest case of a homogeneous plasma with no external
fields, there are two types of natural plasma oscillations, since a plasma has
two species of charged particles. These oscillation types are quite different,
since the electrons and ions that are responsible for them differ greatly in
mass. We first consider the high-frequency oscillations of the uniform plasma
that are due to electron motion. They are called plasma waves, and the
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limiting case of these oscillations corresponding to an infinite wavelength
was analyzed in Chapter 3. As in that analysis, we assume the ions to be at
rest and their charges to be uniformly distributed over the plasma volume. As
with acoustic oscillations in a gas, we shall derive the dispersion relation for
the plasma waves from the continuity equation (9.5), the Euler equation
(9.15), and the adiabatic condition (15.6) for the wave. Moreover, we take
into account that the motion of electrons produces an electric field owing to
the disturbance of the plasma quasineutrality. The electric field term is
introduced into the Euler equation (9.15), and the electric field strength
is determined by Poisson’s equation (3.2).

As with the deduction of the dispersion relation for acoustic oscillations,
we assume that parameters of the oscillating plasma can be written in the
form (15.2), and in the absence of oscillations both the mean electron velocity
w and the electric field strength E are zero. Hence, we obtain

—iwN! + ikNyw' = 0,

kp'  eE
P =y, (15.9)

Here k and w are the wave number and the frequency of the plasma
oscillations, N, is the mean number density of charged particles, p, =
Nym (v?) is the electron gas pressure in the absence of oscillations, m, is
the electron mass, v, is the electron velocity component in the direction of
oscillations, and the angle brackets denote averaging over electron velocities.
The quantities N,, w', p', and E’ in Eq. (15.9) are the oscillation amplitudes
for the electron number density, mean velocity, pressure, and electric field
strength, respectively.

Eliminating the oscillation amplitudes from the system of equations (15.9),
we obtain the dispersion relation for plasma oscillations

w® = ol + y(u)Hk?, (15.10)

where o, = y/4wNye®/m, is the plasma frequency [Eq. (3.9)]. Plasma oscil-
lations are longitudinal, in contrast to electromagnetic oscillations. Hence,
the electric field due to plasma waves is directed along the wave vector. This
fact was used in deducing the set of equations (15.9).

The dispersion relation (15.10) is valid for adiabatic propagation of plasma
oscillations. If heat transport is due to electron thermal conductivity, the
adiabatic condition takes the form w7~ w/( xyk?) > 1 [compare with Eq.
(15.8)], where w is the frequency of oscillations, 7~ ( xk?)~! is a typical
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time for heat transport in the wave, y is the electron thermal diffusion
coefficient, and k is the wave number of the wave. Since y ~ v, A, then
w~ w, ~U,/rp, where v, is the mean electron velocity, A is the electron
mean free path, and rp, is the Debye—Hiickel radius. The adiabatic condition

yields
Arpk? < 1. (15.11)

If this inequality is reversed, then isothermal conditions in the wave are
fulfilled. In this case the adiabatic parameter y in the dispersion relation
(15.10) must be replaced by the coefficient 2.

Note that because the frequency of plasma oscillations is much greater
than the reciprocal of a typical time interval between electron-atom colli-
sions, we have w, > N,,0,, ~ v,/A. From this it follows that A > r,.

p ea

15.3 ION SOUND

We consider now the plasma oscillations that are due to the motion of ions in
a homogeneous plasma. The special character of these oscillations is due to
the large mass of ions. This stands in contrast to the small mass of electrons,
which enables them to follow the plasma field, so that the plasma remains
quasineutral on the average:

Ne = NI'

Moreover, the electrons have time to redistribute themselves in response to

the electric field in the plasma. Then the Boltzmann equilibrium is estab-

lished, and the electron number density is given by the Boltzmann formula

(2.8):

1+ 2
T,

e

>

ep
N, =N, exp( ?) =N,

e

where ¢ is the electric potential due to the oscillations, and 7, 1is the
electron temperature. These properties of the electron oscillations allows us
to express the amplitude of oscillations of the ion number density as

ep
N/ = Ny—.
i ()T

€

(15.12a)

We can now introduce the equation of motion for ions. The continuity
equation (9.5), dN,/dt + d(Nw,)/d x = 0, gives

wN! = kNyw,, (15.12b)
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where w is the frequency, k is the wave number, and w, is the mean ion
velocity due to the oscillations. Here we assume the usual harmonic depen-
dence (15.2) for oscillation parameters. The equation of motion for ions due
to the electric field of the wave has the form M,(dw,/dt) = eE = —eVp,
where M is the ion mass. Taking into account the harmonic dependence
(15.2) on the spatial coordinates and time, we have

Eliminating the oscillation amplitudes of N, ¢, and w; in the set of
equations (15.12), we obtain the dispersion relation

w=ky — (15.13)

connecting the frequency and wave number. These oscillations caused by ion
motion are known as ion sound. As with plasma oscillations, ion sound is a
longitudinal wave; that is, the wave vector k is parallel to the oscillating
electric field vector E. The dispersion relation for ion sound is similar to that
for acoustic waves. This is due to the fact that both types of oscillations are
characterized by a short-range interaction. In the case of ion sound, the
interaction is short-ranged because the electric field of the propagating wave
is shielded by the plasma. This shielding is effective if the wave length of the
ion sound is considerably larger than the Debye—Hiickel radius for the
plasma where the sound propagation occurs: kr, << 1. The dispersion rela-
tion (15.13) is valid if this condition is fulfilled.

To find the dispersion relation for ion sound in a general case, we start
with the Poisson equation for the plasma field in the form

d%

i 4mwe(N, — N)).
In the case of long-wave oscillations treated above, we took the left-hand side
of this equation to be zero. Now, using the harmonic dependence of wave
parameters on the coordinates and time, we obtain —k7% for the left-hand
side of this equation. Taking N, = N,(1 + e@/T,) in the right-hand side of
this Poisson equation, we obtain

e K°T,
N =Ny— |1+ -1
T, 47 Nye-

e

In the treatment of long-wave oscillations, we neglected the second term in
the parentheses. Hence, the dispersion relation (15.13) is now replaced by

o Ty K
=ky/ —/1+ :
v M, 47N, e?

(15.14)
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This dispersion relation transforms into Eq. (15.13) in the limit krp < 1
when the oscillations are determined by short-range interactions in the
plasma. In the opposite limit kr, > 1 we get

47N, e’
M,

(15.15)

In this case a long-range interaction in the plasma is of importance, and from
the form of the dispersion relation, we see that ion oscillations are similar to
plasma oscillations.

15.4 MAGNETOHYDRODYNAMIC WAVES

New types of oscillations arise in a plasma subjected to a magnetic field. We
consider the simplest oscillations of this type in a high-conductivity plasma.
In this case the magnetic lines of force are frozen in the plasma, and a
change in the plasma current causes a change in the magnetic lines of force,
which acts in opposition to this current. The oscillations thus generated are
called magnetohydrodynamic waves.

For magnetohydrodynamic waves with wavelengths smaller than the radius
of curvature of the magnetic lines of force, we have

1 H

, 15.16
k VH ( )

where H is the magnetic field strength. Then one can consider the magnetic
lines of force to be straight lines. We construct a simple model of oscillations
of a high-conductivity plasma, where the magnetic lines of force are frozen in
the plasma. The displacement of the lines causes a plasma displacement, and
due to the plasma elasticity, these motions are oscillations. The velocity
of propagation of this oscillation is, according to Eq. (15.5), given by
c = +dp/dp, where p is the pressure and p = MN is the plasma density, so
that M is the ion mass. Because the pressure of a cold plasma is equal to the
magnetic pressure p = H?/(87), we have

HoH/oN
=V am
for the velocity of wave propagation. Since the magnetic lines of force are
frozen in the plasma, dH/dN = H/N. This gives
H
]

for the velocity of these waves. The quantity c, is called the Alfvén speed.

(15.17)
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Figure 15.1 (a) A pipe of magnetic lines
of force in equilibrium, and its distortion
during (b) magnetic sound oscillations,
and (c) magnetohydrodynamic oscillations.  (a) (b) (¢

The oscillations being examined may be of two types, depending on the
direction of wave propagation (see Fig.15.1). If the wave propagates along the
magnetic lines of force, it is called an Alfvén wave or magnetohydrodynamic
wave., This wave is analogous to a wave propagating along an elastic string,
The other wave type propagates perpendicular to the magnetic lines of force.
Then the vibration of one magnetic line of force causes the vibration of a
neighboring line. Such waves are called magnetic sound. The dispersion
relation for both types of oscillations has the form

w = cpk. (15.18)

15.5 PROPAGATION OF ELECTROMAGNETIC WAVES
IN PLASMAS

We shall now derive the dispersion relation for an electromagnetic wave
propagating in a plasma. Plasma motion due to an electromagnetic field
influences the wave parameters, and therefore the plasma behavior deter-
mines the dispersion relation for the electromagnetic wave. We employ
Maxwell’s equations

1 ¢6H 47 1 6E
curlE = — ——, cul H= —j + — — (15.19)
c Jat c c Jdt

for the electromagnetic wave. Here E and H are the electric and magnetic
fields in the electromagnetic wave, j is the density of the electron current
produced by the action of the electromagnetic wave, and c¢ is the light
velocity. Applying the curl operator to the first equation of (15.19) and the
operator —(1/c) (d/dt) to the second equation, and then eliminating the
magnetic field from the resulting equations, we obtain

47 dj 1 J’E

VdivE —AE + - — + —— =0, 15.20
div c? ot c? 9t? ( )

where A is the Laplacian.
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We assume the plasma to be quasineutral, so that according to Maxwell’s
equations divE = 0. The electric current is due to motion of the electrons, so
that j = —eNyw, where N, is the average number density of electrons, and w
is the electron velocity due to the action of the electromagnetic field. The
equation of motion for the electrons is m, dw/dt = —eE, which leads to the
relation

aj dw  €’N,

eNy—
at “dt  m,

Hence, we obtain

1 9’E 0
c c? ot 7
for the electric field of the electromagnetic wave, where w/ is the plasma
frequency. Writing the electric field strength in the form (15.2) and substitut-

ing it in the above equation, we obtain the dispersion relation
22 .22
w'=w, tc k2. (15.21)

for the electromagnetic wave. If the plasma density is low (N, — 0, o, = 0),
the dispersion relation agrees with that for an electromagnetic wave propa-
gating in a vacuum, w = kc. Equation (15.21) shows that electromagnetic
waves do not propagate in a plasma if their frequencies are lower than the
plasma frequency w,. A characteristic damping distance for such waves is of

the order of c/‘/ wlf — w? according to Eq. (15.21).

15.6 THE FARADAY EFFECT FOR PLASMAS

The Faraday effect manifests itself as a rotation of the polarization vector of
an electromagnetic wave propagating in a medium in an external magnetic
field. This effect is due to electric currents in a medium subjected to a
magnetic field, and leads to different refractive behavior for waves with
left-handed and with right-handed circular polarization. Hence, electromag-
netic waves with different circular polarizations propagate with different
velocities, and propagation of electromagnetic waves with plane polarization
is accompanied by rotation of the polarization vector of the electromagnetic
wave.

We consider an electromagnetic wave in a plasma propagating along the
z-axis while being subjected to an external magnetic field. The wave and the
constant magnetic field H are in the same direction. We treat a frequency
regime such that we can neglect ion currents compared to electron currents.
Hence, one can neglect motion of the ions. The electron velocity under the
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action of the field is given by Egs. (13.4). The electric field strengths of the
electromagnetic wave corresponding to right-handed (subscript +) and left-
handed (subscript —) circular polarization are given by

E,= (E, +iE,)e ",
E_=(E, —iE,)ei"".
For a plasma without collisions (wr < 1), Egs. (13.4) lead to

N 2 ;2
iN,e’'E fw E,

m(w+ wy) - da(w + wy),

j+: _eNe(Wx + iwy) =

) N ) iw]fE_
Jj_ = —eN,(w, iw,) = rrTp—
When we employ in equation (15.20) the harmonic dependence (15.2) on
time and space coordinates of wave parameters, we have

k’E — dmiwj/c* — w’E/c?* = 0. (15.22)

In the physical problem being examined the electromagnetic wave propa-
gates along the direction of the magnetic field. Using the above expressions
for the density of the electron currents, we obtain the dispersion relations for
the electromagnetic waves with different circular polarizations in the form

2 2 2 2
w w w w”

K+ w,—L2— - — =0, k+o —2——— =0, (1523)
w, T wy c’ w_— wy c”

where subscripts + and — refer to right-handed and to left-handed circular
polarizations, respectively. Based on these dispersion relations, we can ana-
lyze the propagation of an electromagnetic wave of frequency w in a plasma
in an external magnetic field. At z = 0 we take the wave to be polarized
along the x-axis, so that E = i E exp(—iwt), where we introduce the unit
vectors i and j along the x and y axes, respectively. The electric field of this
electromagnetic wave in the plasma is

i J
E=iE +JE, = §(E++ E_)+ 7(E+— E_).
l

We use the boundary condition

— ik z—iwt)
E,=Eze @,

— ik_z—iwt)
E_=FE;e .
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Introducing k = (k, + k_)/2 and Ak = k,— k_, we obtain the result

Akz Akz
) (15.24)

E = E,e/*z" 99 jcos—— + jsin— |.
0 ( 2 T

From the dispersion relations (15.23) it follows that

k: = i 1 % k? = o 1 % 15.25
Y w(w+ wy) |’ T ¢l w(w — wy) - (15.23)

Assuming the inequalities Ak < k and w, < w, Egs. (15.25) yield

w
Ak = —
c

|&
[ =l )

(15.26)

(0]

This result establishes the rotation of the polarization vector during
propagation of the electromagnetic wave in a plasma. The angle ¢ of the
rotation in the polarization is proportional to the distance z of propagation.
This is a general property of the Faraday effect. In the limiting case w > w,,
w > w, we have

dp Ak wy w]f
gz 2 c 2w

For a numerical example we note that for maximum laboratory magnetic
fields H ~ 10* G the first factor w,/c is about 10 cm™!, so that for these
plasma conditions the Faraday effect is detectable for propagation distances
of the order of 1 cm.

From the above results it follows that the Faraday effect is strong in the
region of the cyclotron resonance w = w;. Then a strong interaction takes
place between the plasma and the electromagnetic wave with left-handed
polarization. In particular, it is possible to have the electromagnetic wave
with left-handed polarization absorbed, while the wave with right-handed
circular polarization passes through the plasma freely. Then the Faraday
effect can be detected at small distances.

15.7 WHISTLERS

Insertion of a magnetic field into a plasma leads to a large variety of new
types of oscillations in it. We considered above magnetohydrodynamic waves
and magnetic sound, both of which are governed by elastic magnetic proper-
ties of a cold plasma. In addition to these phenomena, a magnetic field can
produce electron and ion cyclotron waves that correspond to rotation of
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electrons and ions in the magnetic field. Mixing of these phenomena of
plasma oscillations, ion sound, and electromagnetic waves creates many types
of hybrid waves in a plasma. As an example of this, we now consider waves
that are a mixture of electron cyclotron and electromagnetic waves. These
waves are called whistlers and are observed as atmospheric electromagnetic
waves of low frequency (in the frequency interval 300-30,000 Hz).
These waves are a consequence of lightning in the upper atmosphere and
propagate along magnetic lines of force. They can approach the magneto-
sphere boundary and then reflect from it. Therefore, whistlers are used for
exploration of the Earth’s magnetosphere up to distances of 5-10 Earth
radii. The whistler frequency is low compared to the electron cyclotron
frequency wy, = eH/(m,c) ~ 10’ Hz, and it is high compared to the ion
cyclotron frequency w,, = eH/(Mc) ~ 10°-10° Hz (M is the ion mass).
Below we consider whistlers as electromagnetic waves of frequency w < w,
that propagate in a plasma in the presence of a constant magnetic field.

We employ the relation (15.2) to give the oscillatory parameters of a
monochromatic electromagnetic wave. Then equation (15.20) gives

k’E — k(k-E) — idrwj/c* = (15.27)

when o << kc. We express the current density of electrons in the form
Jj = —eN,w, where N, is the electron number density. The electron drift
velocity follows from the electron equation of motion (13.13), which, when
V< o < wy, has the form eE/m, = —wy(w X h), where h is the unit
vector directed along the magnetic field. Substituting this in equation (15.27),
we obtain the dispersion relation

k*(i X h) —k[k- (j X h)] — ijowl/(w,c?) =0, (15.28)

where w, = y/ 47w Nye?/m, is the plasma frequency. We introduce a coordi-
nate system such that the z-axis is parallel to the external magnetic field
(along the unit vector h) and the xz plane contains the wave vector. The x
and y components of this equation are

p 2 . 2
lww lww,

P . 2 2y . 2. P .
+ (k°—k:)j, =0, —kj. — ——=j., =0. (15.29
el ( ), fo = ol (15.29)

The determinant of this system of equations must be zero, which leads to the
dispersion relation

wyc’kk,  wyc’k? cosd
w=— -2 . (15.30)

2 2
(1)P wp

Here ¢ is the angle between the direction of wave propagation and the
external magnetic field.
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One can see that the whistler frequency is considerably higher than the
frequency of Alfvén waves and magnetic sound. In particular, if the whistler
propagates along the magnetic field, Eq. (15.30) gives © = w}/w,y, where
w, is the frequency of the Alfvén wave, and w,, is the ion cyclotron
frequency. Since we assume w > w,,,, this implies that

w > Wy > Wy - (15.31)

In addition, because @ << wy,, the condition @ < kc¢ leads to the inequali-
ties
w < ke < w,. (15.32)

Whistlers are determined entirely by the motion of electrons. To examine
the nature of these waves, we note first that the electron motion and the
resultant current in the magnetized plasma give rise to an electric field
according to equation (13.13). This electric field, in turn, leads to an electron
current according to equation (15.27). In the end, the whistler oscillations are
generated. Note that because the dispersion relation has the dependence
w ~ k2, the group velocity of these oscillations, b, = dw/dk ~ \/c%, grows
with the wave frequency. This leads to an identifying characteristic of the
received signal if it is a short-time signal with a wide band of frequencies.
The decrease of the tone of such a signal with time is the reason for the
name “whistler”.

The polarization of a whistler propagated along the magnetic field can be
found from Eq. (15.29) together with the dispersion relation (15.30). The
result is

jy =i do= =i, (15.33)

From this it follows that the wave has circular polarization. This wave
propagated along the magnetic field therefore has a helical structure. The
direction of rotation of wave polarization is the same as the direction of
electron rotation. The development of such a wave can be described as
follows. Suppose electrons in a certain region possess a velocity perpendicu-
lar to the magnetic field. This electron motion gives rise to an electric field
and compels electrons to circulate in the plane perpendicular to the magnetic
field. This perturbation is transferred to the neighboring regions with a phase
delay. Such a wave is known as a helicon wave.



CHAPTER 16

PLASMA INSTABILITIES

16.1 DAMPING OF PLASMA OSCILLATIONS IN IONIZED GASES

Interaction of electrons and atoms leads to damping of plasma oscillations
because electron—atom collisions shift the phase of the electron vibration and
change the character of collective interaction of electrons in plasma oscilla-
tions. We shall take this fact into account below, and include it in the
dispersion relation for the plasma oscillations. To obtain this relation we use
Eq. (9.16) instead of Eq. (9.15) as the equation for the mean electron
momentum. Then the second equation in the system (15.9) is transformed
into

) _ kp' ek’ w'
—ilow' +i —
T

) 16.1
meNO m, ( )

and the remaining equations of this system are unchanged. Here r is the
characteristic time for electron—atom elastic collisions.

Replacing the first equation of the system (15.9) by Eq. (16.1), we obtain
the dispersion relation

—
= ol + vk - — 16.2
w \/wp )'(Ux> . ( )
instead of (15.10). This dispersion relation requires the condition
oT > 1, (16.3)
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Substituting Eq. (16.2) into Eq. (15.2), we find that the wave amplitude
decreases with time as exp(—t/7); this decrease is due to the scattering of
electrons by atoms of the gas. The condition for existence of plasma oscilla-
tions is such that the characteristic time of the wave damping must be
considerably higher than the oscillation period; namely, the inequality (16.3)
must hold. The frequency of collisions between electrons and atoms is
1/7 ~ No v, where N is the atom number density, v is a typical velocity of
the electrons, and o is the cross section for electron—atom collisions.
Assuming this cross section to be of the order of a gas-kinetic cross section,
the mean electron energy to be ~ 1 eV, and the frequency of plasma
oscillations to be given by Eq. (3.9), we find that the condition (16.3) is
equivalent to the estimate

N!2/N > 1072 cm®/2,

This shows that in some gas-discharge plasmas the conditions for the exis-
tence of plasma oscillations are not fulfilled.

16.2 INTERACTION BETWEEN PLASMA OSCILLATIONS
AND ELECTRONS

The above damping mechanism for plasma oscillations is due to
electron-atom collisions. Collisions of an electron with atoms cause a phase
shift of the oscillations of the colliding electron, leading to the damping of
these oscillations. Now we consider another mechanism for interaction of
electron with waves. Electrons can be captured by waves (see Fig. 16.1), and
then a strong interaction between these electrons and the wave takes place.
To analyze this process in detail, we note that in the frame of reference
where the wave is at rest, a captured electron travels between the potential

Figure 16.1 The phase space diagram for electrons in interaction with plasma
oscillations. Plasma electrons captured by plasma oscillations have a closed trajectory
in the phase space, where u is the phase velocity of the wave.
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“walls” of the wave. Reflecting from one wall, an electron exchanges energy
with the wave. If the electron velocity in this frame of reference is u, this
energy is

Ag = %m‘_,(up +u)’ - %me(up —u)’ = 2mp,,

where v, = w/k is the phase velocity of the wave. A characteristic velocity of
captured electrons in the frame of reference being considered is u ~
(ep/m,)"/?, where ¢ is the amplitude of the scalar potential of the wave. We
assume that collisions of a captured electron with other plasma electrons
occur enough often that the captured electron can reflect only once from the
potential wall of the wave. The subject electron obtains energy from the
plasma electrons and escapes from the potential well. This means that
the frequency of collisions with plasma electrons is greater than the fre-
quency of oscillations of the captured electron in the potential well of the
wave. The collision frequency according to Eq. (5.5) is N,e*T./?m;'/? In A,
and the frequency of oscillations of the captured electron is of the order of
(e@k/m,)'/* ~ \JeE'k/m, ~ \Je’N'/m,, where k is the wave number of
the oscillation, and ¢, E’, and N’ are the corresponding parameters of the
oscillation. This gives the condition

N'/N, < N,e/T? (16.4)

for the interaction between a captured electron and the wave.

Assuming this criterion to be satisfied, we now seek to establish the
direction of the energy exchange between the wave and plasma electrons.
The electron distribution function is not altered by the interaction with the
wave, and it is necessary to compare the number of electrons with velocity
v, + u that transfer energy to the wave and the number of electrons with
velocity v, —u that take energy from the wave, where u is a positive
quantity. The number of captured electrons is proportional to the electron
distribution function f(v). Hence, the wave gives its energy to electrons and
is damped if f(u, + u) is larger than f(v, — u). This means that the wave is
damped when

of
— <0. 16.5
[aUX :|“x=l)p ( )

Here v, is the component of the electron velocity in the direction of the wave
propagation, and the derivative is taken for an electron velocity equal to the
phase velocity v, of the wave. When the condition (16.5) is not satisfied, the
wave takes energy from the electrons and its amplitude increases.

In deriving the condition (16.5) for wave damping, we stated that the
condition (16.4) is satisfied when the field of the wave does not affect the
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A f(vy)

Figure 16.2 The electron distribution function for an electron beam injected into a
plasma. The solid line corresponds to the initial distribution, and the dashed line to a
later distribution.

electron distribution function. However, (16.5) holds also when the condition
(16.4) is not satisfied and the electron distribution function is altered due to
the interaction with the wave. Interaction with the wave tends to equalize the
number densities of electrons with velocities v, +u and v, = U, and hence to
decrease the derivative df/dv, at v, = v, albeit without a change in its sign.
That is, Eq. (16.5) remains valid even when the interaction with the wave
alters the electron distribution function.

The condition (16.5) is satisfied if the electron distribution function is of
Maxwellian form or if it is simply a monotonically decreasing function, and
oscillations in such a plasma decrease with time owing to the interaction with
electrons. However, when an electron beam is injected into the plasma
producing the electron distribution function of Fig. 16.2, plasma oscillations
in this system will be amplified, getting the necessary energy from the
electrons. The interaction between plasma oscillations and electrons will
reduce the velocity of the electrons until the electron distribution function
again becomes monotonically decreasing.

Amplification of the oscillations can cause the amplitude to increase
rapidly with time. If the oscillation amplitude is small and the oscillations do
not alter the electron distribution function, that is, if the condition (16.4) is
satisfied, then the oscillation amplitude will increase exponentially. When
particles of the plasma transfer their energy to the plasma wave, thus
amplifying it, such a state is termed an unstable plasma state.

16.3 ATTENUATION FACTOR FOR WAVES IN PLASMAS

We introduce into Eq. (15.2) the attenuation factor y for the waves, so that
the oscillation amplitude varies as exp(— yt). We can estimate the attenua-
tion factor when the wave does not affect the electron distribution in the
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plasma, so that the condition (16.4) remains satisfied. Variation with time of
the energy density W of the plasma oscillations can be estimated to be

dw
— ~ uj f(v) Aedu. (16.6)

— Uy

Here v ~ uyk is the oscillation frequency for an electron captured in the
potential well of the wave, u, = 2ep/m,)'/?, ¢ is the amplitude of the
potential oscillations, and Ae = 2m,u, is the maximum change in
the electron energy when the direction of the electron motion is reversed.
(We take into account only the interaction between the wave and captured

electrons.) The right-hand side of the Eq. (16.6) may be estimated as

af A L af if ew
v—uyAe uy ~ ugk—u,m, u, -uy, ~ —
v, 0 0 O p, 0PI 0 Gy mk,

where we use the relations v, = w/k and W ~ (E')* ~ ¢*/k* (E' is the
amplitude of the electric field of the wave). From the definition of the
attenuation factor y of the plasma wave, we have dW/dt = —yW, so we
obtain the estimate

ew f

mk? dv,’

y~ (16.7)

Attenuation occurs when the condition (16.5) is satisfied. The attenuation
factor (16.7), which is due to the interaction between the charged particles
and the wave, is known as the Landau damping factor.

The condition for the existence of oscillations is

Y < w. (16.8)

We can examine the implications of the condition (16.8) for plasma oscilla-
tions, and we can also investigate ion sound, assuming the Maxwell distribu-
tion function for the particles. Taking o ~ w,, we obtain

krp < 1, (16.9)

for plasma oscillations, where rj, is the Debye—Hiickel radius (3.6). When
this condition is fulfilled, the phase velocity of the wave is considerably
higher than the thermal velocity, so that the electrons captured by the wave
are at the tail of the distribution function.

When ion sound propagates in a plasma in which the temperatures of
electrons and ions are the same, the phase velocity of the sound is of the
order of the thermal velocity of the ions, and the attenuation factor is of the
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order of the wave frequency. Therefore, ion sound can propagate only in
plasmas in which the electron temperature 7, is considerably higher than the
ion temperature 7;:

T, > T,. (16.10)

16.4 BEAM-PLASMA INSTABILITY

Assume that an electron beam penetrates into a plasma, where the velocity
of the electrons in the beam is much higher than a thermal velocity of the
plasma electrons, while the number density N, of the electrons in the beam
is considerably lower than the number density N, of plasma electrons.
Deceleration of the electron beam can occur owing to the scattering of
electrons of the beam on electrons and ions of the plasma. There is, however,
another mechanism for deceleration of the electron beam, known as beam
instability. In the early days of plasma physics this phenomenon was known
as the Langmuir paradox. Langmuir discovered that the temperature of the
electrons in a beam ejected from a cathode surface becomes equal to the
temperature of the electrons of the gas-discharge plasma into which it
penetrates, at distances from the cathode that are small compared to the
mean free path of the electrons. Because it was assumed in that era that
energy exchange between beam and plasma electrons results only from
collisions, the Langmuir effect was considered to be a paradox. In actuality,
interaction of the beam electrons with plasma electrons proceeds more
effectively through collective degrees of freedom of the beam—plasma system
than through collisions. This interaction can be succinctly described as
follows. Suppose plasma oscillations are generated in a plasma. Interacting
with electrons of the beam and taking energy from them, these oscillations
are amplified. Thus, some of the energy of the electron beam is transformed
into the energy of plasma oscillations and remains in the plasma. This energy
may subsequently be transferred to other degrees of freedom of the plasma.

We can estimate the amplification of the plasma oscillations in the above
scenario assuming the oscillation amplitude to be small, and taking the
temperatures of the electrons in the plasma and in the beam to be zero.
Hence, the pressure of the electrons in the plasma and beam is zero.
Applying the continuity equation (9.6) and the Euler equation (9.15) to the
plasma electrons, we derive equations for the amplitudes of the plasma
parameters that follow from the first two equations of (15.9) with p’ = 0.
Elimination of the electron velocity w' in the wave in these equations yields

keE'
N = —i——N,. (16.11a)

= — 3
m,w

One can obtain the expression for the amplitude N; of oscillations of the
electron number density in the beam in a similar way by writing the electron
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number density N in the beam as N, + N, expli(kx — wt)] and the velocity
of the electrons in the beam as u + w, expli(kx — wt)], where the x-axis is
parallel to the velocity of the beam, and N, and u are, respectively, the
electron number density and velocity in the unperturbed beam. Then we have
ikeE'N,,
Ny=—-—"". (16.11b)
m,(w — ku)

As was done in arriving at the last equation of the system (15.9), Poisson’s
equation (3.2) yields the equation

ikE' = —4me(N, + N}) (16.11c)

for the amplitude of the system’s parameters. Eliminating the amplitudes N’,
Ny, and E’ from the set of Egs. (16.11), we obtain the dispersion relation

w? N,
2= (16.12)
w' (- ku)® Ny

|&
[l = Y

Here w, = (4mwNye’/m,)'/? is the frequency of plasma oscillations. When
the number density of the beam electrons is zero (N, = 0 ), Eq. (16.12)
reduces to the form taken by Eq. (15.10) when the electron temperature is
taken to be zero. The strongest interaction between the beam and plasma
occurs when the phase velocity of the plasma waves, w/k, is equal to the
velocity of the electron beam. Let us analyze this case. Since the number
density N, of the beam electrons is small compared to the number density N,
of the plasma electrons, the frequency of the plasma oscillations is close to
the plasma frequency w,. Hence, we shall consider waves with the wave
number k = w,/u, which have the most effective interaction with the elec-
tron beam. We write the frequency of these oscillations as w = w, + 8 and
insert it into Eq. (16.12). Expanding the result in a series in the small
parameter 6/w,, we obtain

N\ (2min
d=w, 2—N0 exp( 3 )

where n is an integer. One can see that 8/w, ~ (N,/Ny)'/? < 1. That is,
the expansion in 8/w, is valid.

If the imaginary component of the frequency (which is equal to the
imaginary component of &) is negative, the wave is attenuated; if it is
positive, the wave is amplified. The maximum value of the amplification
factor is given by (n = 1)

\/3- Nb 13 Nb 3
—y = — — = 0.69 — . 16.13
e —
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The amplitude N| varies with time as exp(y?); this result is valid if the
plasma oscillations do not affect the properties of the plasma. This type of
instability is known as the beam-plasma instability. As a result of this
instability, the distribution function of the beam electrons expands (see
Fig. 16.2), and the energy surplus is transferred to plasma oscillations.

16.5 THE BUNEMAN INSTABILITY

We now consider instability of another type that develops if the mean
velocity of the electrons differs from the mean velocity of the ions. We
formulate the problem by taking all the plasma ions to be at rest and all the
electrons to travel with a velocity u with respect to the ions. The plasma is
quasineutral: that is, the number densities of the electrons and ions are
equal. Our goal is to determine the maximum amplification factor of the
plasma oscillations. The electron beam is decelerated owing to the transfer of
energy from the beam to the plasma oscillations.

With this formulation, the problem is equivalent to the previous case of
interaction of an electron beam and a plasma. In both problems there is an
electron beam penetrating the plasma, so that the dispersion relation can be
derived in a similar way. Denoting the ion mass as M and taking into account
the equality of ion and electron number densities, we obtain the dispersion
relation

wZ

ot =] (16.14)

me
M o (w-ku)’

|&
[ =1 Y

instead of the relation (16.12). If we let the ratio m,/M go to zero, we obtain
the dispersion relation w = w, + ku. Hence, one can write the frequency of
the plasma oscillations as

w=wp+ku+8.

Substituting this frequency into Eq. (16.14) and expanding the result in a
power series in the small parameter 8/ w,, we obtain
2
28 _m w,
wp M (wp+ku+8)2
The electron beam has the strongest interaction with the wave whose wave
number is k = —w,/u. For this wave we have

m, 173 2win
6= ( " ) w,EXp 3 s
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where n is an integer. The highest amplification factor corresponds to n = 1
and is given by

y='m oM

2

‘/—3_(’7% i

1/3 m,\! /3
) w, = O.69wp(—) . (16.15)
Note that the frequency of oscillations is of the order of the amplification
factor. This type of instability of the electron beam due to interaction with
plasma ions is known as the Buneman instability. The above analysis of the
Buneman instability has a qualitative character because the wave frequency

and the attenuation factor are of the same order of magnitude. Nevertheless,
this analysis allows us to estimate the rate of destroy of the plasma motion.

16.6 HYDRODYNAMIC INSTABILITIES

The instabilities discussed above are so-called kinetic instabilities, for which
the amplification of oscillations is due to the differences in the character of
the motion of various groups of particles. The development of oscillations
ultimately results in a change of the velocity distribution function for the
charged particles of the plasma. Another class of instabilities is known as
hydrodynamic instabilities. The development of hydrodynamic instabilities
involves a displacement of the plasma regions and results, finally, in variation
of the spatial configuration of the plasma. We shall analyze the simplest type
of hydrodynamic instability: the pinch instability.

We examine the stability of the pinch configuration with respect to
development of the so-called sausage instability. This instability changes the
radius of the pinch but conserves its axial symmetry. We have to find under
what conditions an accidental distortion of the pinch will not develop further.
Let us assume that the distortion of the pinch results only in a slight curving
of the magnetic lines of force; that is, the radius of curvature of the magnetic
lines of force is considerably larger than the radius of the pinch. According to
Eq. (13.43), the relation

HZ
p+ 3 const.
is satisfied in the plasma region.

We must analyze the variation of the parameters of the pinch due to
variation of its radius. The total current and magnetic flux through the cross
section of the pinch will be conserved. The electric current is I, = caH,/2,
where a is the pinch radius and H, is the axial magnetic field strength. The
condition 81, = 0 yields 8a/a + 6H,/H, = 0, where 8a is the variation of
the pinch radius and 8H, is the variation of the axial magnetic field at the
pinch surface outside the plasma. The longitudinal magnetic field is frozen
into the plasma, so that a displacement of plasma elements does not change
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the magnetic flux through them. The condition for conservation of the
magnetic flux, ®, = 7a’H,, yields 2 8a/a + 8H,/H, = 0 (where H, is the
longitudinal external magnetic field inside the plasma). Hence, 6H,/H, =
2(8H,/H,). The variation of the magnetic field pressure inside the plasma is
8[H?/(87) 1= H, 8H,/(4m), and the variation of the magnetic pressure
outside the plasma is H, 8H,/(4w) = H} 8H,/(8wH.). It can be seen that
if

H}>H}/2 (16.16)
holds true, the additional internal magnetic field pressure produced by the
distortion of the pinch is smaller than the additional outside magnetic field

pressure. When the condition (16.16) is satisfied, the pinch is stable with
respect to displacements of the sausage type.



CHAPTER 17

NONLINEAR PHENOMENA
IN PLASMAS

17.1 THE LIGHTHILL CRITERION

Plasma instabilities cause the development of certain types of oscillations.
The subsequent evolution of these oscillations is determined by interactions
between the oscillations and the plasma itself. The strength of these interac-
tions depends on the wave amplitude. Hence, we deal with nonlinear plasma
phenomena. But the role of nonlinear plasma processes is not restricted to
the development of instabilities. Nonlinear processes affect the nature of
wave propagation in a plasma. In fact, interaction between elementary waves
is effected through the interaction of these waves with the plasma. Therefore,
nonlinear phenomena determine both the profile and the character of the
propagation of all waves in a plasma except those of small intensity.

To study the development of perturbations in a plasma, we examine a
perturbation in the form of a one-dimensional wave packet consisting of
waves encompassing a narrow range of wave numbers (Ak < k). The pertur-
bation amplitude at a point x is

a(x,t) = Ya(k)exp(ike — iwt), (17.1)
k

where a(k) is the amplitude of the wave with a wave number k. We take into
account the wave dispersion, expressible as

da(ky) dw(ky) 5
w(k) = w(ky) + pys (k_ko)"'—akz (k — ko)
1 avg(ko) 5
= g + 0k = ko) + 5 —— = (k = ko). (17.2)

272



THE KORTEWEG-de VRIES EQUATION 273

Here k, is the mean wave number of the wave packet, and u, is the group
velocity of the wave. Since wave number values are restricted to an interval of
width Ak near k,, then according to Eq. (17.1) the perturbation is initially
concentrated in a spatial region of extent Ax ~ 1/Ak. As the wave packet
evolves, it diverges due to the different group velocities of individual waves.
The initial wave packet, which has a size of the order of 1/Ak, diverges on a
time scale given by 7 ~ (Ak*)~'(9v,/9k)~". That is, wave dispersion usually
leads to increasing spatial extension of the wave as a function of time.

The interaction of waves of different k-values influences the behavior of
this process. In particular, it can even lead to compression of the waves. In
order to assess this possibility, we take into account the dependence

w=w,— aE? (17.3)

of the wave frequency on its amplitude, where E is a (small) field amplitude,
and o, is the frequency of this wave. Inserting expansions (17.2) and (17.3)
into Eq. (17.1), we obtain

a(x,t) = Za(k)exp(z’(k — ko) (x — xy) — ikyx,
k

. 2 Ug . 2
—i(k = ko)’ — ot = iaE* ()1 (17.4)

for the wave-packet amplitude. From Eq. (17.4) it follows that nonlinear wave
interactions can lead to modulation of the wave packet. With certain types of
modulation the wave packet may decay into separate bunches, or it may be
compressed into a solitary wave—a soliton. This phenomenon is known as
modulation instability.

Equation (17.4) shows that the compression of a wave packet or its
transformation into separate bunches can take place only if the last two
terms in the exponent in this equation have opposite signs. Only in this case
can a nonlinear interaction compensate for the usual divergence of the wave
packet. Therefore, modulation instability can only occur subject to the
condition

Ju

—t <o. 17.5
Yok (17:5)

This condition is called the Lighthill criterion.

17.2 THE KORTEWEG-de VRIES EQUATION

The above analysis shows that wave dispersion leads to divergence of the
wave packet. If this divergence is weak, a weak nonlinearity is able to change
its character. We now consider an example of such behavior when a wave is
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characterized by small dispersion and nonlinearity. Consider the propagation
of long-wavelength waves in a medium in which the dispersion relation has
the form

w=uv,k(1 - rjk®), rk<1. (17.6)

This form describes a variety of oscillations, with sound and ion sound as
examples. We shall obtain below a nonlinear equation that describes such
waves.

Take as a starting point the Euler equation (9.8) for the velocity of
particles in a longitudinal wave, which has the form

ov ov F

— +v— - —=0. (17.7)
ot ax m

Here uv(x, t) is the particle (gas atom or gas molecule) velocity in a longitudi-
nal wave which propagates along the x-axis, F is the force per particle, and
m is the particle mass. Within the framework of a linear approximation one
can write the particle velocity in the form v = u, + V/, where v, is the group
velocity, and ' is the particle velocity in the frame of reference where the

wave is at rest. Because V' <« Uy, We have

v v F
— tp———=0
at & ox m

in the linear approximation. The last term is a linear operator with respect to
v'. In the harmonic approximation we have v/ ~ exp(ikx — i wt). We seek the
form of the operator F/m that leads to the dispersion relation (17.6) in this
approach. This gives the equation

av
— 4+

ar T ax TG

dIx ax?

4o R
du 2au)=

The last term takes into consideration a weak dispersion of long-wave
oscillations. In order to account for a nonlinearity of these waves, we analyze
the second term of this equation. In the linear approach we replaced the
particle velocity v by the group velocity u,. Returning this term to its initial
form, that is, taking into account weak nonlinear effects, we obtain

v v A 0 178
— +v— +yr;—5 =0. .
ot ax B0 gyl (17.8)

This equation is called the Korteweg—de Vries equation and was originally
obtained in the analysis of wave propagation in shallow water.
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The Korteweg—de Vries equation accounts for nonlinearity and weak
dispersion simultaneously, and therefore serves as a convenient model equa-
tion for the analysis of nonlinear dissipative processes. As applied to plasmas,
it describes propagation of long waves in a plasma for which the dispersion
relation is given by Eq. (17.6).

17.3 SOLITONS

The Korteweg—de Vries equation has solutions that describe a class of
solitary waves. These waves are called solitons and conserve their form in
time. It follows from the dispersion relation (17.6) that short waves propagate
more slowly than long waves, but nonlinear effects compensate for the
spreading of the wave. We now show that this property holds true for waves
that are described by the Korteweg—de Vries equation. We consider a wave
of velocity u. The space and time dependence for the particle velocity has the
form v = f(x — ut). This gives dv/dt = —u dv/dx, and the Korteweg—de
Vries equation is transformed to the form
dv ,d%v

(U—u)a;+l)gr0w=0. (179)
Assuming the perturbation to be zero at large distances from the wave, (that
is, v > 0, d>v/dx* - 0 as x — «), this equation reduces to

2dzu v?
Ugrow = Uuv — "2—- 5
with the solution
x u
v= 3ucosh‘2(— — ) . (17.10)
2ry Vb,

The wave described by Eq. (17.10) is concentrated in a limited spatial region
and does not diverge in time. The wave becomes narrower with increase of its
amplitude, with its extension inversely proportional to the square root of the
wave amplitude.

In other words, the Korteweg—de Vries equation has stationary solutions
describing a nonspreading solitary wave, or soliton. The amplitude a and
extension 1/a of solitons are such that the value a/a* does not depend on
the wave amplitude. If the initial perturbation is sufficiently small, evolution
of the wave packet leads to formation of one solitary wave. If it is large, the
perturbation in the course of evolution of the system will split into several
solitons. Thus, solitons not only are stable steady-state perturbations in the
system, but also can play a role in the evolution of some perturbations in a
nonlinear dispersive medium.
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17.4 LANGMUIR SOLITON

The occurrence and propagation of solitons is associated with an electric
field that exists in a plasma as the result of a wave process, and this field
confines the perturbation to a restricted region. This can be demonstrated
using the example of plasma oscillations. Denoting by E(x,t) the electric
field strength of the plasma oscillations, we have

E?

W(X) = g

for their energy density, where the bar means a time average. Assuming the
equality of electron and ion temperatures (T, = T; = T), the pressure of a
quasineutral plasma is p = 2N,T. The plasma pressure is established with a
sound velocity that is larger than the velocity of propagation of long-wave
oscillations. Then, because of the uniformity of plasma pressure at all points
of the plasma, we have

AN(x)T + W(x) = 2N,T, (17.11)

where N, is the number density of charged particles at distances large
enough that plasma oscillations are absent. (The plasma temperature is
assumed to be constant in space.)

The dispersion relation (15.10) for plasma oscillations has the form

2 —E_2 2 2
w’ = w“(l + y{virk* (17.12)

Pl" " 16wN,T

when Eq. (17.11) is taken into account, where w, is the plasma frequency in
the absence of fields. We use in Eq. (17.12) the expression (3.9) for the
plasma frequency.

We can write Eq. (17.12) in a more convenient form. Take the electric
field strength of the wave in the form E = Ejcoswt, so that E*= E§/2.
Using v?= T/m, for electrons and introducing the Debye—Hiickel radius rp,
according to Eq. (3.5), Eq. (17.12) gives

5
2

w'=w|1- + 2y rik?]. (17.13)

0
327N, T
The first term on the right-hand side of this expression is considerably larger
than the other two.

One can see that the dispersion relation (17.13) satisfies the Lighthill
criterion (17.5), because we have in this case
Iy, Yw,

i R s S Y )
ok 327m,N,
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Thus, nonlinear Langmuir oscillations can form a soliton. The dispersion
relation (17.13) shows that if the energy density of plasma oscillations is high
enough [so that the second term of Eq. (17.13) is larger than the third one],
the oscillations cannot exist far from the soliton. The oscillations create a
potential well in the plasma and are enclosed in this well. They can propa-
gate in the plasma together with the well and occupy a restricted spatial
region. The size of the potential well (or the soliton size) decreases with
increase of the energy density of the plasma oscillations. Because rpk < 1,
the solitons are formed when the energy density of the oscillations is small
compared to the specific thermal energy of charged particles of the plasma.
Thus, this analysis demonstrates the tendency to form solitons from long-wave
plasma oscillations. However, the analysis used does not allow one to study
the evolution of oscillations of large amplitudes.

17.5 NONLINEAR ION SOUND

We next analyze nonlinear ion sound when the nonlinearity is large. For this
purpose we use the Euler equation (9.8), the continuity equation (9.5), and
the Poisson equation (3.2), which, in the linear approach, leads to the
dispersion relation (15.13) for jon sound. When we use these equations
without any linear approximation, they can be written as

au, au, e do
— +y— + —— =0,
at dx M ox
N2 N, 0 17.14
+ . = R .
L —(Nw) (17.14)

9

—‘f = 4me(N, — N;).
ox-

Here v, is the velocity of ions in the wave, ¢ is the electric potential of the
wave, N, and N, are the number densities of electrons and ions respectively,
and M is the ion mass. As was discussed above, electrons are in equilibrium
with the field owing to their high mobility. Therefore, the Boltzmann distri-
bution applies to the electrons, so N, = Nyexplee/T,), where N, is the
mean number density of charged particles, and T, is the electron tempera-
ture.

We now analyze the motion of ions in the field of a steady-state wave
when the plasma parameters v;, N,, and ¢ depend on time and the spatial
coordinate as f(x — ut), where u is the velocity of the wave. Then the set of
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equations (17.14) can be rewritten as

au; e do
(Ul - u)_ 37 A Y
d M dx
d
[N —w] =0, (17.15)
(92<p

The perturbation is assumed to be zero far from the wave, so that N; — N,
v, » 0 and ¢ — 0, as x — . The first two equations of the set (17.15) then
give

v /2 — uv; + ep/M = 0,

Ni=N0

u-—u

The second equation implies that v, < u because N; > 0. This means that
¢ = 0 in the first equation, that is, the electric potential of this ion—acoustic
wave is always positive. The first equation leads to v, = u — (u? — 2e@/M)'/?,
and the second equation gives N; = Nyu(u? — 2eq@/M)~'/2. Substituting in
the last equation of the system (17.15), we obtain the equation

d2

dmeN. (e<p) u
— = d7eNy|exp| — | - ———=
dx? \"\T ) T Vi = 2ee/M

for the ion sound. This equation describes the potential of the electric field
for the nonlinear ion-acoustic wave. It is in the form of an equation of
motion for a particle if ¢ is regarded as the coordinate and x as time. A
general property of this type of equation is that multiplication by the
integration factor d¢/dx makes it possible to perform one integration
immediately. Equation (17.16) then becomes

1([1@2 47 N,T, i 4NMV° i
5 dx) 7N, T, exp T TNoMuyju” — —-= = const.

Assuming that at large distances from the wave the potential ¢ and the
electric field strength of the wave —d¢/dx are zero, we can evaluate the
constant of integration and obtain

(17.16)

47 Ny M 2 —26‘P
+ — E—
yMulu u i

1/do
|

2 ep
E) + 47N, T,[1 - exp(?)

[4

(17.17)
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This solution describes a solitary wave because, according to the boundary
conditions, the perturbation goes to zero at large distances. The solution
allows one to determine the shape of the soliton and the relation between its
parameters for various amplitudes of the wave. We first determine from
equation (17.17) the relation between the maximum potential ¢, of the
wave and its velocity u. We can do this by putting de¢/dx = 0 and ¢ = ¢,
into Eq. (17.17). Introducing the reduced variables ¢ = e¢,,, /T, and 5 =
Mu?/(2T,) , one can rewrite Eq. (17.17) as

1—expl+ 27|l - 1—£)=0. (17.18)

M

The limiting cases of this equation are instructive. For small amplitude of
the ion—acoustic wave (£ — 0), Eq. (17.18) gives n = 3. This yields the phase
velocity u = (T,/M)'/? for this wave, corresponding to the dispersion rela-
tion (15.13) for ion sound of small amplitude. For large-amplitude waves,

Eq. (17.18) implies { = 7, so that the equation for ¢ takes the form
1 —expl{+2{=0. (17.19)

This equation yields ¢ = 1256, so that e¢,,, = 1.2567, and u =
1.585(T,/M)'/2. For larger wave amplitudes the electric potential at the wave
center becomes too large to admit solutions of Eq. (17.18), and ions are
reflected from the crest of the wave. As a result, part of the wave reverses
and the wave becomes segmented. Thus, a solitary ion—acoustic wave exists
only in a restricted range of wave amplitudes and velocities. Exceeding the
limiting amplitude leads to a wave decaying into separate waves.

17.6 PARAMETRIC INSTABILITY

Nonlinear phenomena are responsible for interaction between different
modes of oscillation. A possible consequence of this interaction is the decay
of a wave into two waves. Since the wave amplitude depends on time and
spatial coordinates by the harmonic dependence exp(ik-r — iwt), such a
decay corresponds to fulfilling the relations

wy = w, + w,, ko =k, + k,, (17.20)

where subscript 0 relates to the parameters of the initial wave, and subscripts
1 and 2 refer to the decay waves. This instability is called parametric
instability. We consider below an example of this instability in which a
plasma oscillation decays into a plasma oscillation of a lower frequency and
an ion-acoustic wave (ion sound).
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The electric field of the initial plasma oscillation is
E = E;jcos(kyx — wyt),

where x is the direction of propagation. In zero approximation we assume
the electric field amplitude E, and other wave parameters to be real. The
equation of motion for electrons, m, dv,/dt = —eE, yields the electron
velocity vy, = ug cos(kyx — wyt), where u, = eEy/(m,w).

Let another plasma wave and the ion sound wave be excited in the system
simultaneously with the initial plasma oscillation, and let their amplitudes be
small compared to the amplitude of the initial oscillation. Consider the time
development of these waves, taking into account their interaction with each
other and with the initial oscillation. Since ion velocities are much lower than
electron velocities, one can analyze these waves separately. The equation of
motion and continuity equation for ions are

dy, .
ar
N/ v,
— + Ny—x=0.
Jat 7

Here M is the ion mass, v; is the ion velocity, N, is the equilibrium number
density of ions, N/ is the perturbation of the ion number density due to the
oscillation, and E is the electric field due to the oscillations. Elimination of
the ion velocity from these equations yields

3°N; eN, JFE
>t
at- M ax

=0. (17.21)

We can find the electric field strength from the equation of motion for the
electrons by averaging over fast oscillations. The one-dimensional Euler
equation (9.8) can be rewritten for electrons as

v, v, 1 op, ek
+0,— + + — =0, (17.22)
dat ox m, N ox m

e

[4

where the electron gas pressure is p, = NT,, T, is the electron temperature,
and N is the electron number density. After averaging over fast oscillations,
the first term in this equation is zero. We write the electron velocity as
v, = v, + v,, where v, is the electron velocity due to the small-amplitude
plasma wave. Then we have

o, lovr 19

e

s J

3 —
v = — = vy + U)) = —uy,
¢ 9x 2 9x 2z9x(0 ) gx ¢
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where the bar denotes averaging over fast oscillations. We assume that
T, = const, corresponding to a high rate of energy exchange in the
ion—acoustic wave. During the ion motion, the electron number density has a
relaxation time for maintaining the quasineutrality of the plasma. Therefore,
after averaging, the deviation of the electron number density from equilib-
rium is the same as that for ions, and the third term in the Euler equation
(17.22) becomes

1 dp, T,

[4

No

m,N dx m

e (N =N,).

4
The Euler equation after averaging is transformed into

4 T, 4N/ el

—o + —— — + — =0.
dx m,N, dx m

[4

Substituting the electric field derived from this equation into equation
(17.21), we obtain

d°N; T, ’N, m,N, 9* _ 0 1723
92 M ox? M gx 0% (17.23)

If we ignore the last term in equation (17.23) and assume harmonic
dependence of the ion density on time and spatial coordinates, we obtain the
dispersion relation (15.13) for ion sound: w = ¢k, ¢, = {/T,/M . To take into
account interaction between ion sound and plasma oscillations, we have to
trace the motion of electrons in the field of the small-amplitude plasma wave.
To do this, we shall use the Maxwell equation for the electric field of the
small amplitude wave, assuming the magnetic field to be zero. This gives
JE' /ot + 4xj' = 0. Here E’ is the electric field of the wave, and j' is the
electric current density generated by it.

For simplicity, we shall ignore thermal motion of the electrons, since it has
only a small effect on the oscillation frequency. Therefore, when writing the
expression for the current density, we can ignore the variation of the electron
number density due to the electron pressure of the plasma wave. Assume the
electron number density to have the form N, + N/, where N, includes
the equilibrium electron number density and its variation under the action
of the initial plasma wave, and N/ is the variation of the ion number density
owing to the motion of ions. Accordingly, the electron velocity is v, + v,
where v, is the electron velocity due to the initial plasma wave, and ), is the
electron velocity due to the small-amplitude plasma wave. The current
density due to the small-amplitude plasma wave is then

J'=—e(N, + N))(v, + 1) +eNv, = —eN,v, — eNf vy,
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where we neglect second-order terms. The Maxwell equation JE'/dt + 4w
= 0 can now be rewritten as

JE'
e 4meN v, — 4mweN,v, = 0.

The electron equation of motion is

du, £
me—- = —ek'.

Eliminating E’ from these equations, we obtain

9%y, N/
+ wlU + N-wgvo =0 (17.24)

4

as the equation for the electron velocity due to the small-amplitude plasma
wave. Here o, = \/47rNL,eZ/me is the frequency of plasma oscillations
ignoring the thermal motion of electrons. One can see that if we do not take
into account the interaction between the small-amplitude plasma wave with
the initial plasma oscillation and the jon—acoustic wave [that is, if we ignore
the last term in equation (17.24)], then the assumptions used here give the
small-amplitude plasma wave frequency as being equal to the plasma fre-
quency.

We must solve the set of equations (17.23) and (17.24). We take the
parameters to have the forms

vy = Uy cos(kyx — wyt),
v, =acos(k,x — w,t),

N/ = bN, cos(k;x — w;t),

where a and b are slowly varying oscillation amplitudes, @, and k, are the
frequency and the wave number of the small-amplitude plasma wave, w; and
k; are the frequency and the wave number of the ion sound, and N, is the
equilibrium number density of the charged particles. [We assume that N, = N;
in equation (17.24).] Since the oscillation amplitudes vary slowly, the time
and space dependences are identical, so we find from equations (17.23) and
(17.24) that

Wy = w, + o, ko=k, + k;, (17.25)

as in Eq. (17.20). This condition is similar to that for parametric resonance of
coupled oscillators, and therefore the instability that we analyze is termed a
parametric instability.



PARAMETRIC INSTABILITY 283

Taking into account a slow variation of the oscillation amplitudes and the
condition (17.25), we find from equations (17.23) and (17.24) the equations

da

E = weuob/4,

ab

o = —m,kuya/(4Mw;)

for the oscillation amplitudes. Solution of these equations shows that the
oscillations grow with the dependence a,b ~ exp(yt) with

1 /m, o, P 1 [m,w, eE, P 17.26

YTy Mo, uOi_4 Mo, m,w, = (17.268)
Thus, the initial plasma wave is unstable. It can decay into a plasma wave of
a lower frequency and ion sound. This instability is known also as the decay

instability. The exponential growth parameter for the new wave is propor-
tional to the amplitude of the decaying wave.




CHAPTER 18

IONIZATION INSTABILITIES
AND PLASMA STRUCTURES

18.1 DRIFT WAVES

A laboratory ionized gas is usually maintained by an external electric field
that generates an electric current and causes ionization in the gas. Electrons
are the principal plasma component in the sense that electrons contribute
most of the total electric current, and formation of new charged particles is
due to collisions of electrons with gas atoms or molecules. Perturbations of
the electron number density are thus of central importance to the oscillation
properties of the plasma.

To examine the simplest form of perturbations in the plasma, we begin
with the continuity equation (9.5),

JN,
— +divj =0,
at

for electrons, and we assume that the electron flux j is determined solely by
the electron drift in an external electric field. The current is then j = wiN,,
where w is the electron drift velocity. Using Eq. (15.2) for a perturbation to
the electron number density, we obtain the dispersion relation

w = kw. (18.1)

That is, there is a wave associated with the perturbation that propagates
together with the electric current. In other words, the perturbation moves
together with the electric current. Such perturbative waves are called drift
waves.

284
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Damping or amplification of these waves can occur by several mecha-
nisms. One such mechanism is the diffusive motion of the electrons. The
electron flux is then j = wN, — DVN, (where D is the diffusion coefficient
for electrons in the plasma), and the dispersion relation that follows from the
continuity equation for electrons has the form

w = kw — iDk?. (18.2)

The diffusion of the electrons is seen to lead to damping of the drift wave
because the dependence of electron parameters on time has the form
exp(—iwt). As a result of electron diffusion, the perturbation region enlarges
and the perturbation dissipates.

Drift-wave behavior depends on the type of ionization processes in the
gas. Under certain conditions, the interaction of drift waves with ionization
leads to amplification of the drift waves. This phenomenon is called ioniza-
tion instability. Various types of ionization instability can occur, depending on
the properties of the plasma and the processes within it. The development of
ionization instability leads to formation of structures in the plasma that will
be considered below.

18.2 IONIZATION INSTABILITY FROM THERMAL EFFECTS

A common causal mechanism for ionization instability is to be found in the
positive column of an arc, where the instability arises from thermal processes.
The equilibrium electron number density depends strongly on the plasma
temperature, while the temperature dependence of the heat transport coeffi-
cient is weak. At high intensities, a thermal instability occurs because heat
transport mechanisms are unable to cope with the amount of heat released.
This instability may lead to contraction of the plasma, or it can cause the
formation of new types of structures in the plasma. A simple example of this
phenomenon arises when the heat transport in a cylindrical discharge tube
depends upon the thermal conductivity. The heat balance equation in this
case has the form

ld( ( )dT
— 2 p(p) =
pdp\” dp

where p is the distance from the tube axis, « is the thermal conductivity
coefficient, p(p) = iE is the specific power of heat release (where i is the
current density), and E is the electric field strength. We assume that the rate
at which heat energy is released is strongly dependent on the local plasma
temperature, and is a function only of this temperature.

This model is descriptive of arc discharges at high currents and high
pressures. If the discharge plasma is in equilibrium, the electron and gas

+p(p) =0, (183)
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temperatures are nearly the same, and the electron number density can be
estimated from the Saha formula to behave as N, ~ exp[~J/(2T)], where J
is the ionization potential of the gas atoms, and it is usually true that 7' < J.
The specific power of heat release is p = iE, where the electric field strength
E does not vary over the discharge cross section, and the current density i
varies as N,. The specific power of heat release in an arc discharge is not
only determined entirely by the temperature, but it has a strong dependence
on the temperature. In this case the equilibrium between ionization and
recombination is maintained at each point in the plasma. This is called local
ionization equilibrium.

We introduce the new variables z = p?/rf and 6 = (T - T,)/T, into
Eq. (18.3), where r, is the tube radius, and T,, is the wall temperature. Then
Eq. (18.3) can be written in the form

d

de
— — = 1 .4
dz(zdz)+AexP(b9) 0, (18.4)

where A = rip(T,)/[4T,«(T,)), b =T, dIn p(T,)/dT,, and in this case
b > 1. Because of the strong dependence of p on T, we can assume that the
thermal conductivity coefficient « is independent of the temperature. The
solution of Eq. (18.4) is given by the Fock formula

2y
—In————,
b Ab(1 + yz)

(18.5)

where vy is a parameter to be determined by boundary conditions. One of the
boundary conditions of Eq. (18.4) is 6(0) = 0, following from the definition
of this function. This gives the relation for y that

2y = Ab(1 + y)°. (18.6)

Since the parameter vy is real, we have 4b < 3. If this condition is not
satisfied, then Eq. (18.4) has no real solution. This means that thermal
instability arises because heat extraction is not compensated by heat release.
The instability then leads to a different discharge regime where the current
occurs in a narrow region near the tube center.

The threshold for this instability corresponds to y = 1 and Ab = 4, that
is, it has its onset when p(T,)) = 4p(T,,), where T, is the temperature on the
axis. The instability threshold at 4b = § corresponds to

dp(T) 2«(T,)
dr Ir, 2

(18.7)
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If this instability leads to contraction of the plasma, these relations make it
possible to estimate a radius p, for the new contracted regime of the plasma.
Equation (18.7) then gives

dp(T) ™
dT T=Tn’

pi ~ K(To)[ (18.8)

where T, is the temperature on the axis.

18.3 IONIZATION INSTABILITY OF A PLASMA IN
A MAGNETIC FIELD

We wish to examine the above case in detail at small currents. In this
problem, local ionization equilibrium exists everywhere within the plasma, so
that the Saha relation for the electron number density is valid, but heat
transport processes are not essential. We can examine the time evolution of a
perturbation of the electron number density. The electron energy per unit
volume is W = 3N,T,/2, and the balance equation for this quantity has,
according to Eq. (9.41), the form

. Ew N 3m€
ar | Etee M

Here we take account of the negative direction of the electric field, m, and
M are the electron and atom masses, 7, and T are the electron and atom
temperatures, and for simplicity we assume that the electron—atom collision
frequency » = No,* is independent of the electron velocity. The quantity N,
is the atom number density, o,* is the diffusion cross section of electron—atom
collisions, and v is the electron velocity.

Because of the local ionization equilibrium, we have N, ~ exp(~J/2T,),
where J is the atomic ionization potential. This gives the relation

N, T, J

N, T, 2T,

[4

(T, = T)wN,. (18.9)

between perturbation values of the electron number density N, and tempera-
ture T,, so we can conclude that

L N
_ << —,
Te 13

Based on this inequality, the term T, ' dT,/dt can be neglected compared to
the term N, ' dN,/dt on the left-hand side of Eq. (18.9). This yields the
result

dN, 4T, m,

dte=—yNe’, where v = M

v, (18.10)
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Thus, the ionization perturbation being analyzed has a time scale for damp-
ing that is much greater than a typical time for electron—atom collisions.

We now develop the constant-magnetic-field case. We employ the geome-
try of Chapter 13, where the electric field is directed along the x-axis and the
magnetic field along the z-axis. Then we obtain from Eqgs. (13.22) the
electron drift velocity w in the case where » = const, if we represent this
relation in the vector form

eEv eE X oy

mo(ah + ) | my(wh + 07

w= - , (18.11)

where the vector o, = eH/(m,c) is parallel to the magnetic field.

The physical framework for this problem is such that electrodes collect the
electron current in the x-direction. Hence, there is no electric current along
the y-axis. The electron drift velocity along the x-axis creates the electric
field along the y-axis, and the strength of this electric field is

m,v m

E=— W —
e e

e

@, X W, (18.12)

as follows from Eq. (18.11)

A perturbation in the electron number density causes a perturbation of
the electric field strength and the electron drift velocity. We can determine
these perturbations from Eq. (18.9), which is now

. EwN, E'wN, il 18.13
= — | — eE'wN, + , .
7 eEwN, — eE'wN, a ), ( )
where the quantity (dW,/dt); = —3N,T.(m,/M) is established by energy
changes in electron—atom collisions, and was evaluated above.

The relationship between the perturbations w' and N, can be derived
from the continuity equation (9.5) for electrons. This can be used in the
steady-state form div(N,w) = 0, since the instability develops slowly. Writing
the dependence on r in the form exp(ik - r), where k is the wave vector, we
obtain

N, (W - K) + N/ (w- k) = 0. (18.14)

We can now apply Eq. (18.11) to eliminate the perturbed drift velocity of
the electrons from this expression. First, we find the direction of w'. Since the
perturbation develops slowly, we can write E' = —Vg¢', where ¢' is the
perturbation of the electric potential. As before, we assume ¢’ ~ exp(ik * r)
and obtain E' = —ik¢’, that is, the vectors E' and k are either parallel or
antiparallel. Then, using the relationship (18.11) between the vectors w' and
E', we obtain

kaH)

w' = const - (k -
14
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Multiplying the vector w' by itself, we evaluate the constant in the above
expression to obtain

vk -~k X oy
W= tw—
k\/w,%,+ p?

Substituting this expression into the relationship derived from the continuity
equation yields

w’ N, a
— = i—N—\/w,f, + vzcos(—), (18.15)
14

where cosa = k, /k, with a the angle between vectors w and k. Substitution
of this into Eq. (18.13) gives, with the help of Eq. (18.10),

, [ wysin2a T,
) = Ne’meww(——— — cos’e — —|. (18.16)

. di\ 2 v 2]

aw’' d ( 3N,T,
If the right-hand side of this equation is positive, any random deviation of the
electron number density from its equilibrium value continues to grow; that is,
instability develops. This expression has a maximum when tan2a = ~wy/v.
For this direction of the vector k, Eq. (18.16) has the form

aw’ [ Vei + v T,
— =Nmwy|——— -1 - —|. (18.17)
dt v 2J

From this it follows that this instability has a threshold, given by w, /v >
(T,/J)/?. When the ratio w, /v is large, the ionization instability develops
for perturbations propagating at the angle « = 45° to the direction of the
current. If this ratio is small, the most unstable perturbations propagate in a
direction almost perpendicular to the current.

18.4 ATTACHMENT INSTABILITY OF A MOLECULAR GAS

Several different instabilities are possible during the formation of negative
ions by attachment of electrons to molecules. This process is related to the
formation of positive ions by loss of electrons, and to recombination events.
All of these processes can create ionization structures and waves in a plasma.
As an example, we shall consider attachment as it occurs in the plasma of an
excimer laser.

In an excited molecular gas (for example, HCl) the attachment rate
constant increases with increase of the vibrational temperature. The positions
of electron terms, as illustrated in Fig. 18.1, determine the properties of this
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4
U(R) N

Figure 18.1 Electron terms that participate in the electron — attachment process
determine the properties of the transition.

process. It proceeds according to the scheme

AB + ¢ » (AB™)**,
(AB")** > A +B", (18.18)
(AB™)** - AB* +e.

Here (AB™)** denotes an autodetaching state of the negative ion, and AB*
denotes a vibrational excited state of the molecule. The probability of
attachment after formation of the autodetaching state (AB™)** is propor-
tional to the factor

[7r(R) dr

exp —R‘—flu——— , (1819)

where I'(R) is the width of the autodetaching level, v is the relative velocity
of the nuclei, R is the location of the electron captured into the autodetach-
ing level, and R, is the distance at which the terms intersect. The exponen-
tial factor is the survival probability of the autodetaching state, and it is
usually quite small. Hence the greater the distance at which the electron is
captured, the higher is the probability for formation of the negative ion.
Because the capture distance grows with increase of the molecular vibra-
tional temperature, so does the attachment rate constant .

We can apply these features to the analysis of the balance equations for
the electron number density and vibrational temperature 7,, which have
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the form
dN,
It = —ValNe + VionNe’
T,
— = N,k,ho - M.
ot

Here v, = Nk, is the electron attachment frequency (k,, is the rate constant
for this process, and N is the number density of molecules), v;,, is the
ionization frequency, k., is the rate constant for the vibrational excitation of
molecules by electron impact, #w is the vibrational energy of the molecule,
and M, is the vibrational relaxation rate. Linearizing these equations,

assuming that perturbations of N, and T, vary with time as exp(—iwt), and

taking v, = v,,, for an unperturbed state, we find that the process being
studied is oscillatory in nature if du, /dT, > 0. The frequency is

D ok N 18.20

WEg = K IV, wdT ’ ( . )

v

and the oscillations are known as Eletskii oscillations.

One can combine these oscillations and drift waves by inserting the
electron drift into the balance equation for the electron number density.
Then instead of Eqgs. (18.1) and (18.20), we obtain the dispersion relation

w=kw/2 + JkPwl/4 + i, (18.21)

which transforms to Eq. (18.1) or (18.20) in the appropriate limits.

18.5 ELECTRIC DOMAIN

One of a variety of steady-state structures that can be formed by nonlinear
processes in a plasma is called the electric domain—a perturbation of the
electron number density and the electric field in a gas-discharge plasma that
propagates with the electron current. The physical picture of this phe-
nomenon is as follows. The external segment of an electric circuit that passes
through a gas discharge has a large resistance that maintains a constant
electric current density in the discharge. This constant current is

i, = —ewN, = const, (18.22)
where w is the electron drift velocity, and N, is the electron number density.
The dependence of the electron drift velocity on the electric field strength
has the behavior shown in Fig. 18.2, where two different electric current
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Wp [ = e e e e e e g e e

Figure 18.2 Dependence of the electron drift velocity on the electric field strength
that can lead to the occurrence of an electric domain.

regimes are possible at some values of the electric field strength. This
behavior can preserve a perturbation that propagates together with the
current, meaning that it is a drift wave. Such a perturbation identifies what is
called the electric domain.

To describe the electric domain, we use the continuity equation (9.5) and
the Poisson equation (3.2), which here take the forms

aN, dj, oF
— 4+ — =0, — =47e( N, - Ne), (18.23)
dt ax ax

where j, is the electron flux, E is the electric field strength, and N, is the
equilibrium number density of electrons. We first treat these equations in a
linear approximation so as to analyze the electric domain at small intensity.
The electron flux can be written

aN,

= —Nw - D=~ 18.24
Je W pp ( )

where D is the diffusion coefficient of electrons in a plasma, and the minus
sign in the first term accounts for the direction of the electron current.
Taking E and N, to exhibit harmonic behavior as expressed by Eq. (15.2), we
can write

E = El) + E/ei(kxfw!)’ Ne = 1\]0 + Nlei(kx"wr).
We then obtain the dispersion relation

dw
w= —kw — iDk? - i47'rN0eE (18.25)
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with the help of Egs. (18.23) and (18.24). We have employed here the
connection dw/dx = (dw/dEXdE /dx). The dispersion relation (18.25) de-
scribes drift waves (18.2) that move together with the electron current. The
diffusion process removes electrons from the perturbation zone, thus causing
damping of these waves. But if dw/dE < 0, long drift waves with Dk? <
—4mwNyedw/dE can develop.

We now study a nonlinear electric domain. In a nonsteady interval of the
electric field strengths of Fig. 14.6, Eq. (18.24) has the form

e

) N,
Jo= —Nw(E;) = ~Nw(E) - D ox

We should add to this equation the Poisson equation (18.23). Eliminating the
electron number density between these equations, we obtain
d? dE
DF=W(E)E—47-reNO[w(E) - w(E,)]. (18.26)
Equation (18.26) describes the behavior of the electric field strength in the
electric domain.
If we assume that diffusion plays a secondary role, and neglect diffusion in
the first stage of the analysis, then Eq. (18.26) takes the form

dE w(E,) ~ 1)

E = 47T€N0( W(E)

We solve this equation with the boundary condition E = E, at x = 0. The
solution is shown in Fig. 18.3a. As can be seen from Eq. (18.27), E(x)
increases with x until E, < E < E,, where w(E;) = w(E,). At E = E, we
have dE /dx = 0, so that for subsequent values of x we obtain E = E,. Thus
this solution describes the conversion of the system from the unstable state
E, to the stable state with E = E;.

This transition means that the change of the discharge regime as a result
of the perturbation of the electric field strength increases up to E;. For this
to take place throughout the plasma would require a variation of the
discharge voltage that is impossible, because the discharge voltage is main-
tained by the external voltage. Therefore, the variation of the electric field
strength from E, to E, is a perturbation that takes place in a limited region
of the plasma. A return to the initial value of the field occurs as a result of
diffusion, leading to decay of the perturbation. Hence, a typical size of the
back boundary zone of the electric domain is of the order of D/w. The size
of the forward boundary zone can be estimated from Eq. (18.27), and is
Ax = AE/(4meN, Aw), where AE = E, — E,, and Aw = w(E,) — w,;, (see
Fig. 18.2). A concomitant of the distribution of the electric field strength in
the electric domain is the distribution of the electron number density shown
in Fig. 18.3, arising from Poisson’s equation (18.23).

(18.27)
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Figure 18.3 The distribution of (a) the electric field and the (b) electron number
density in the electric domain.

18.6 STRIATIONS

Striations, or strates, are plasma structures that are observed in a positive
column of a gas discharge of low or moderate pressure. The column is striped
in an alternation of luminous and dark regions. Striations can move to
electrodes or can be at rest. They exist only in certain ranges of currents and
pressures. They have different properties for atomic and for molecular gases.

Striations are ionization instabilities whose nature is determined by the
connection between the ionization rate and the electron number density. An
increase in the electron number density leads to an increase in the ionization
rate and in the average electron energy. This, in turn, affects the electron
number density. If this connection leads to an instability, striations can be
formed. From the standpoint of gas discharges, striations as oscillating
structures can provide a lower voltage for discharge if an ionization instability
can develop. Hence, the parameters describing striations and the range of
their existence are determined by processes that lead to instabilities.

The study of the mechanisms that give rise to striations is complicated by
the fact that striations exist in an intermediate range of plasma parameters
where the ionization rate constant depends on the electron number density.
We shall examine the case when this phenomenon arises from stepwise



STRIATIONS 295

ionization of atoms. This mechanism corresponds to low-pressure glow dis-
charges in inert gases where metastable atoms are of importance for ioniza-
tion processes.

The balance equation for the electron number density is

N,

e azNe
o " D“_a?_ = ZNe.

(18.28)

where D,is the ambipolar diffusion coefficient, the x-axis is along the axis of
the discharge tube, and Z is the sum of the frequencies of generation and
loss of electrons. Assuming that the ionization wave has a small amplitude,
we have the usual harmonic dependence N, = N, + N'exp(ikx — i wt), where
N’ << N,;. When we introduce the effective electron temperature 7, = T, +
T'explikx — iwt) and insert these relations into Eq. (18.26), we obtain the
dispersion relation

JT,
w= ~iDk? +iZr N~ +iZyN, (18.29)

e

for the ionization wave, where we have used the notation Z, = dZ/JN, and
Zr = 0Z/dT,, and have taken into account that Z = 0 at equilibrium.

This dispersion relation has been obtained by a formal procedure. It
is of importance that the ionization rate Z depends both on the number
density and the temperature of the electrons, and variation of one of these
quantities alters the other. Depending on the connection between these
quantities, waves can be either developed or damped. We give some illustra-
tive examples.

Assume that the resistance of the external circuit is large enough to
conserve the electron current density j. (Note that we use here the notation j
for the electric current density, not for the electron flux as is more usual.)
Then we have

j=3E + eDVN, = const.

This gives the electric field
E=j/2~eDVN,/Z, (18.30)

where X is the plasma conductivity, and D, is the coefficient of ambipolar
diffusion that characterizes the diffusion of electrons in a plasma.

When we use the balance equation for the mean energy of electrons, and
take into account elastic collisions of electrons and gas atoms, then the heat
balance equation for electrons has the form

divg=j-E~N,»de=0, (18.31)
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where q is the heat flux. The first term on the right-hand side of this equation
represents heating of electrons under the action of the electric current. The
second term takes into account elastic electron—atom collisions, so that » is
the collision frequency and e is the mean energy transferred to atoms in a
single collision. Further, we assume that 8¢ is proportional to the mean
electron energy and that the collision frequency is independent of the
electron energy.

Assume that the heat flux ¢ is determined by the electron thermal
conductivity (q = —«VT,, where « is the thermal conductivity coefficient of
electrons) and T ~ N,. Taking X and D, to be dependent on T,, Eqs. (18.30)
and (18.31) give the dispersion relation

%] ’ . . 2

) J© N IKED, J
KT = - = — - N' - =
“ SN, = 3

N T
_— 4 —
N Ty

From this it follows that

T, T T, —2—ik/k,
- -t t 0 (18.32)
N, N N, 1+ki/k

e

where k, =j/(eD,N,) and k| = j/2T k. From Eqs. (10.43) we have « ~
Nyu, A, and from Eq. (13.5) we have I ~ Nye’A/(m_v,), where N is the
equilibrium electron number density, and v, ~ /T,/m, is a typical thermal
electron velocity. From this we conclude that k, and k, have the same order
of magnitude.

We now want to identify those conditions that will give rise to an
ionization instability leading to the formation of striations. For this purpose
we substitute Eq. (18.32) into (18.29) and analyze the resulting expression.
Since the electron effective temperature 7, is small compared to the atomic
ionization potential J (7, < J), Eqgs. (5.31) and (5.32) give Z; ~ (J/T.)v,,,
where v, is the frequency for ionization of atoms by electron impact.
Because of the dependence of Z on the electron number density, we have
Zy ~ Vion/Ny. This gives ZyN, < Z;T,, and for long-wave oscillations
(k < k), Egs. (18.29) and (18.32) give Imw < 0, so that long-wave oscilla-
tions are damped. Therefore striations—nonlinear ionization waves—can
only be short-wave oscillations. Then the criterion for the existence of
striations (the Rosen condition) has the form

Z, > 0. (18.33)

There is a range of wave lengths satisfying the condition k& > k, where
Re w > Im w, so that ionization waves—striations—can exist. These waves
are developed by nonlinear interaction.

Consider the example of ionization instability, governed by the stepwise
nonlinear ionization of atoms by electron impact. We shall assume that there
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is only one excited atomic state that contributes to the ionization. We denote
this state by the subscript or superscript *. We thus have

Z = Nk, + Nykit, — 1/7p, (18.34)
where N, and N, are the atom number densities in the ground and excited
states, k,, and k are the rate constants for ionization of atoms in the
ground and excited states by electron impact, and 7, is the time for diffusion
of electrons to the walls of the discharge tube. At equilibrium we have Z = 0.
The dependence of Z on the electron number density due to ionization of
excited atoms is

IN,

Zy =k¥f —. 18.
N ion aN ( 35)

Using Eq. (8.9) for the number density of excited atoms, we obtain
] -1
1+ ,

NequD

N, = NB

where N2 is given by the Boltzmann formula and corresponds to equilibrium
between the ground and excited states. Substituting this into Eqs. (18.32) and
(18.33), and using the relation n, = 1/(kq~rD), we have

k¥ ny N2 J kion NEN,
ZN=——?’ ZT=_7 kionNa+——_
(N, + ny) 1” N, + ny
Inserting these expressions into Eq. (18.27) yields
R Im| Z,N, i
ew= —Im|Z; TN,
J k., NEN, k/k
=3 kion a \ - /20 3 (1836)
; N, +n, |1+ k/ki
k¥ nyNEN, 2J kion NEN, 1
Imw=———_')— 32_ 3 kion a+ 2 2
(Ne_l_n*)" T‘,_ N€+n* 1+k_/kl

for the frequency and damping (or amplification) of the ionization wave.
Equations (18.36) identify that range of parameters where amplification of
the ionization wave (Im @ > 0) can occur. According to Eq. (5.32), we find

that
kionNa (J* )2
~1—1] <1,
k* NE J

on
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where J and J, are the ionization potentials of the atom in the ground and
excited states. Hence, when N, ~ N, and k > k(J/T,), the last term in
Eq. (18.36) for the growth of the ionization wave is not compensated by the
first term. Then the ionization wave can develop until it will no longer decay
as a result of electron diffusion. Thus the ionization wave can amplify in the
range of wave vectors

ki/T/T, <k < y/kiaNB/D, . (18.37)

If this condition is satisfied, ionization waves can develop, and striations
arise. The plasma then exhibits a striped structure with a specific periodicity.

18.7 CHARACTERISTICS OF STRIATION FORMATION

We demonstrated above that striations, as ionization waves, can exist within
an explicit range of parameters describing nonlinear processes involving
electrons and transport phenomena. Now we consider a simple model for
striations that allows us to analyze this phenomenon from another stand-
point.

We assume ionization of an atom by electron impact to be a stepwise
process, where the first step is excitation of the atom to a state with the
excitation energy &.. The subsequent ionization of such an excited atom
arises from collisions with other atoms or slow electrons. We take the
probability of ionization of an excited atom to be ¢ and the probability of its
quenching to be 1 — £, so that 0 < £ < 1. We consider a one-dimensional
positive gas discharge column, and introduce the lifetime 7 (electrons and
ions) with respect to losses by their attaching to walls. In the absence of
ionization, the balance equation for the electron number density N, is

av, N, .
wedx r

where the x-axis is directed along the axis of the gas discharge column, and
w, is the electron drift velocity in an electric field.

Now we consider the simplified Tsendin model of striations. This model
assumes that all the electrons have zero energy at the origin x = 0. These
electrons obtain energy from the electric field, when an electron has acquired
the energy ¢,, it excites an atom, and this atom is then ionized by subsequent
collisions . As a result, we obtain at this point 1 + £ slow electrons instead of
one fast electron.

The solution of the above balance equation is

N,(x) = Noexp(—fx-‘{y—) .

0 W,T

e
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Let the first ionization process take place at x = /. Assuming N,(x) to be a
periodic function of x, we obtain

; dx
f—:ln(1+g). (18.38)
ow,T

This equation is the balance equation for electrons formed as a result of
atomic ionization and lost by attachment of electrons to walls. The other
relation between plasma parameters has the form

[eE(x) dx = e, (18.39)
0

Equation (18.39) holds in the absence of energy exchange between electrons
and atoms as a result of elastic collisions, and in the absence of
electron—electron collisions. The electric field strength E(x) satisfies the
Poisson equation

dE
e 4mwe(N,— N,),

where N, is the ion number density. Since a plasma is quasineutral on the

average, we have
JN.dx= [N, ax.

Then the Poisson equation leads to E(0) = E(/), where E(x) is periodic with
period /. Figure 18.4 shows the electron number density distribution and the
electric field strength along the x-axis that follow from the above relations.

The condition of plasma quasineutrality on the average means equality of
the lifetimes of electrons and ions. If the number of ionization events per
period of the striation is v, the total number of electrons and ions in one
striation band is v7. However, ions are concentrated in an ionization zone
near the point where they formed, whereas electrons formed in this ioniza-
tion zone are distributed over a region of several striations.

We wish now to verify the validity of this model for real atomic gases. We
take the energy exchange in electron—atom collisions to be small as a result
of the small parameter m,/M, where m, is the electron mass and M is the
mass of the atom. Hence, the energy that an electron obtains from the
electric field is expended mostly on excitation of atoms. We next ascertain
the stability of the electron distribution we are examining. We assume that
ionization proceeds when electrons reach the energy ¢,,. Then the ionization
process that leads to a jump in the electron number density and electric field

strength occurs over the distance / = &, /(eE) from the origin, where E is
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Figure 18.4 The distribution of (a) the number density of electrons and (b) the

electric field strength (b) in the positive column of a glow gas discharge with
striations.

the average electric field strength. Concurrently, a strong glow occurs near
this point due to excitation of atoms by electron impact. In reality, the
excitation cross section is zero at threshold, so that excitation proceeds in
some region in space where the electron energy leads to effective atomic
excitation. If the width of the excitation region increases with its population
of electrons, the periodic structure of the plasma is destroyed. Let us
examine this for the regime under consideration.

We follow the sequence of events where an electron that has zero energy
at the origin excites an atom within a distance / + 8/, from the origin, where
it has the energy &, + eE 8/,. After excitation of k atoms this electron has
traveled a distance k/ + Lf_, 8/, where 8/, is the distance required for the
ith excitation beyond /, and ¢, is the electron energy after the kth excitation.
Taking this energy to be zero, we obtain the relation

k
Y 81, =0. (18.40)

i=1
From this it follows that the distance required for & excitations by any
electron approaches &/, which implies the bunching of electrons. This effect
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suggests a periodic distribution structure for the electron and ion number
densities and also for the electric field strength.

Evidently, accounting for the real behavior of this plasma leads to the
broadening of ionization zones. In particular, within the framework of the
simplified Tsendin model being used, we assume the spatial oscillation
period / to be large compared to the tube radius. Because the lifetime 7 of
electrons and ions is the time required for ion drift over a distance of the
order of the tube radius, the width of the ionization zone exceeds this value.
This means that the bunching effect refers to long discharge tubes of small
radius. Since each electron excites many atoms during its lifetime, that
provides a basis for the bunching of electrons.

Despite the simplicity of this model, it helps us to understand the nature
of striations. There are several mechanisms for broadening of ionization
zones. For the stepwise ionization of atoms by electron impact that we are
considering, ionization of excited atoms can result from collisions with slow
electrons. This leads to broadening of the ionization zones. But if the
ionization potential of excited atoms is small compared to that of atoms in
the ground state, as is true for inert gases, the broadening of the ionization
zones is relatively small.

We have now seen the conditions for the existence of striations by this
ionization mechanism. Collisions of electrons lead to exchange of energy
between them and destroy the effect, because when electron—electron colli-
sions occur, ionization zones spread over all space. Hence, striations under
consideration exist at small gas-discharge currents when the electron number
density is small and collisions between electrons are infrequent.

This model shows that two regimes of the plasma can exist. In the first, the
plasma is homogeneous, and ionization of atoms by electron impact occurs
throughout the plasma. In the other regime, ionization occurs in narrow
ionization zones distributed periodically over the length of the discharge
tube. That is, striations exist in this regime. The regime in which the
discharge plasma finds itself is determined by the energy available to the
system, so that the characteristics of the external source of electricity are of
great importance for the plasma behavior.

18.8 CURRENT-CONVECTIVE INSTABILITY

Just as there are a variety of mechanisms that can alter the manner in which
unbound electrons can be introduced into and removed from a plasma, so
also there are different ways in which ionization instabilities can develop. In
addition to the above-described mechanisms for destabilizing a plasma, we
now analyze one more case that involves a plasma in a strong magnetic field.
The configuration we explore is one in which electric current flows in a
cylindrical tube so that the electric and magnetic fields are directed along the
axis of this plasma column. The magnetic field is so strong that electron and
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ion motions in the plasma are dominated by the magnetic field. This means
that the Larmor radii of electrons and ions are small compared to the mean
free paths for these particles. Since charged particles recombine on the walls
of the tube, the plasma is uniform across the diameter of the tube. These are
the conditions in which an ionization instability called the current-convective
instability may occur.

In the environment described, electrons will rotate with respect to ions in
any cross section of the plasma column. This gives rise to an azimuthal
electric field that enhances this motion. The development of the instability is
slow if plasma quasineutrality is conserved. If a small inhomogeneity of the
plasma is present in the direction of the current, then the plasma density is
different in neighboring cross sections of the column. Since the current in the
plasma is conserved, a decrease in the plasma density in any cross section of
the column must be compensated by an additional electric field.

Now let us assume an “oblique” perturbation of the plasma density that is
compensated by an electric field directed at an angle to the column axis.
Then the azimuthal component of the electric field will produce rotation of
the electrons and ions. This will enhance a suitably directed perturbation,
leading to an instability.

We can derive a dispersion relation for such perturbations. The plasma is
quasineutral and magnetized, so that the velocity of electrons and ions is

w = c(E x H,)/HZ, (18.41)

where H is the magnetic field, and E is the electric field of the wave. The
magnetic field of the wave can be ignored, since the perturbation is slow. For
the same reason, the electric field can be described by the potential ¢, that
is, E = —Veg.

The current density is j, = 2E,, where the z-axis is along the axis of the
column, and X is the plasma conductivity. The electric field is the sum of the
external (E,) and wave fields. Since the wave parameters are proportional
to exp(ik - r — iwt), we have E, = E, — ik, . The plasma conductivity is
proportional to the electron number density, so that £ =3, 4+ 3 =
2,1 + N,/N,), where %, is the plasma conductivity, N, is the electron
number density in the absence of perturbations, and X' and N, are the
corresponding perturbed parameters. From the above expressions, the condi-
tion for conservation of the current density in the field direction is

’

N,
~Sotk, o+ YE, =0, or —ik,d+ N‘"—EO =0. (18.42)
0

The continuity equation (9.5) for electrons is

N, 3?
— + div(Nw) - D,— =0,
Jt daz
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where D, is the ambipolar diffusion coefficient for the plasma. We have
ignored the diffusive flux of electrons perpendicular to the magnetic field,
assuming this flux to be small. Assuming harmonic dependence of the
perturbed parameters on time and coordinates, we can rewrite this equation
to first order as

N,
(—iw+ k2D,)N, + wxa—" =0, (18.43)
X

where the x-axis is in the direction of the maximum gradient of the equilib-
rium number density.
Equations (18.41) and (18.42) give
cE, cik,¢  k, cEy N,

*H, H, - kz_H—oNo.

Substituting this in the dispersion relation (18.43), we obtain

jw = k2D, + = ,
TR T L

k. cE
— (18.44)

where 1/L = —d(In Ny)/dx. One can see that instability (/m « < 0) will
develop if the ratio k,/k, has an appropriate sign and value. The instability
has a threshold with respect to the electric field. The magnetic field must be
high enough to meet the conditions described above.

Equation (18.44) shows that the optimum condition for this instability is
such that the cyclotron frequency for ions is of the order of the collision
frequency of ions with gas particles. The threshold for this instability
is connected with the diffusion of charged particles. If the diffusion rate is
sufficiently high, perturbations of the plasma are damped by the diffusion.



CHAPTER 19

ATMOSPHERIC PLASMAS

19.1 SPECIAL FEATURES OF ATMOSPHERIC PLASMAS

In the foregoing, we examined general principles and concepts relating to
plasmas. We shall now apply these principles explicitly to two types of
plasmas: atmospheric plasmas and gas-discharge plasmas. Each of these
examples can display a broad variety of properties and parameters. An
atmospheric plasma is realized in air, and a gas-discharge plasma is initiated
upon ionization of gas atoms by the impact of electrons accelerated by an
external electric field. Properties of atmospheric plasmas depend strongly on
the altitude where they occur. Plasmas in the upper atmosphere are gener-
ated by the absorption of solar radiation that ionizes oxygen atoms and
nitrogen molecules. Plasmas in the lower layers of the atmosphere have
properties dependent on transport processes of charged and excited atoms,
and also by the heat balance of these low-lying atmospheric layers.

Atmospheric plasmas can be used to illustrate the elementary collision
processes that can occur in a weakly ionized plasma. Table 19.1 contains a
list of basic atmospheric plasma processes, and will be referred to in the
analysis of atmospheric phenomena. These processes are an explicit illustra-
tion of the data in Tables 4.1-4.3 and 7.1. We can use photoprocesses as the
first example. Processes 1-3 in Table 19.1 are responsible for formation of
charged particles in the upper atmosphere, and process 4 is associated with
the production of atomic oxygen. The process inverse to 5 gives the main
contribution to glow in the night sky, and processes 7-10 determine auroral
radiation.

304
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TABLE 19.1. Elementary Collision Processes in the Earth’s Atmosphere®

Type Number Typical Process Parameters®
Photoprocesses 1 ho+0—>0%+e v=3X10"7s"1P
2 o+ 0,5 05+e v=4x10"7s7!b
3 Ao+ N, - Ni+e y=3x10""s"1P
4 fiw+ 0, O(D) + OCP) o, ~ 1077 cm?
5 w+0 > 0+e =14s7'P
6 ho+0;->0;+e v=03s"!t
7 0('s) » o('D) + fiw 7=08s,
A = 558 nm
8 o('D) - OCP) + hw =140,
A = 630 nm
9 NCD; ) - NCS) + ho T=14x10%s
A = 520 nm
10 NCD; ) - NCS) + ho T=6x10%s,
A =520nm
Ionization 11 e+0,>05+e ko ~ 1078 cm?/s
12 e+ N, > Ni+e ks ~ 1078 cm®/s
Recombination 13 e+ Nfj> N+ N k=2x10""cm3/s
14 e+0;>0+0 = 2% 107" em®/s
15 e+NO*5>N+O k=4x10"" cm®/s
16 e+ Nj—> N, + N, k=2x10"%cmd/s
17 O +03+N, > 0+0,+N, ky=2x10"% cm3/s¢
18 05+ 0} + 0, - 30, K=16x%10"% cm®/s
19 NO;+NO*+N,>NO+NO,+N, K=1x10"2cm®/s
Electron 20 e+20,> 07+ 0, K=3xX10"% cm®/s
attachment 21 e+0,+N, > 057+ N, K=1x10"% cm®/s
22 e+0,->0"+0 k=2x10"" cm3/s,
e=65eV
Negative ion 23 O +0;-5e+20,+26eV k=3x10""cm’/s
detachment 24 O;7+0,2e+0,+062eV k=3x10"""cm?/s
25 0 +0,5¢+0;-042eV k<1x1072 cm?/s
Dissociation 26 e+0,>20+e¢ k=2x 107" cm?/s,
e>6eV
Ion reactions 27 O'+ N, > NO"+ N+ 1LleV k=6x 1075 em’/s
28 0'+0,-0}+0+15eV k=2x10""cmd/s
29 N*+0,>0"+NO+23eV k=2x10"" em?/s
30 Nj+ O —>NO*+N+32eV k=1x10"" cm®/s
Quenching 31 20,('A,) = O, + O,('E)) k=2x10""cm’/s
32 0,('A) + 0, - 20, k=2x10"% cm3/s
33 02(1E§)+N2—»02+N2 k=2x10"" cmd/s
34 N;,_(A3Z‘g*) +0,-oN,+0, =4 X 1072 cm?/s
35 oD)+0, -0+ 0, k=5x10"" cmd/s
36 o(D)+ N, > O+ N, =6 x 107" em’/s
37 0('s) + 0, >0 + 0, k=3x10"3 cm?/s
38 o) +0-0+0 k=7x10"2 em3/s
Chemical 39 O+ 0, > 20, k=7x10""cm?/s
reaction
Three-body 40 0 +20,- 0;+0, K=7x10"% cm®/s
association 41 O0+0,+N,>0;+N, K=16X10"%cm®/s

*Wavelength A, lifetime 7, and room-temperature rate constants k for pair processes and K for

three-body processes.

Per atom, molecule, or ion for daytime atmosphere at zero zenith angle.

At the pressure 1 atm.
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TABLE 19.2. Heat Balance of the Earth®

Form of Energy Process Power, 10} kW
Sun’s radiation Reaching Earth’s atmosphere 17.3
Reflected by the Earth 0.7
Absorbed by the Earth 8.3
Reflected by the atmosphere 5.4
Absorbed by the atmosphere 29
Infrared radiation Atmospheric emission to space 10.2
Atmospheric emission to Earth 16.7
Absorbed by the atmosphere 18.7
Absorbed by the Earth 16.7
Emitted by the Earth 19.7
Transmitted through the atmosphere 1.0
Convection 1.3
Evaporation 4.0

“Convection of air and evaporation of water from the Earth’s surface lead to transport of energy
from the surface to the atmosphere.

As an introduction to the study of atmospheric plasmas, we consider
general properties of the Earth’s atmosphere. The heat balance of the Earth
is represented in Table 19.2. The source of the Earth’s heat balance is solar
radiation. The Sun as a radiator can be considered to be a blackbody with a
temperature of 5800 K, corresponding to a radiation flux of 6.4 kW /cm?
from its surface, mostly in the visible region of the spectrum. This gives rise
to a radiative flux of 0.14 W /cm? at the Earth’s distance from the Sun, which
translates to 1.74 x 10" kW of solar power reaching the Earth’s atmosphere.
The same amount of power then emanates from the Earth in the form of
emission from the Earth’s surface and atmosphere as infrared radiation, and
reflection by the Earth’s surface and atmosphere. The surface of the Earth
receives and returns 2.5 X 10" kW of power, while the Earth including its
atmosphere receives and returns 2.69 X 10" kW of power. If the Earth is
regarded as an ideal blackbody, the emitted infrared radiation corresponds
to an effective surface temperature of 291 K,

The Earth’s atmosphere at sea level consists mostly of molecular nitrogen
(78%), molecular oxygen (21%), and argon (about 1%); the total number
density of molecules and atoms is 2.7 X 10" ¢cm™* (at a pressure of 1 atm).
The number density of molecules decreases with increasing altitude 4 as
given by the barometric distribution (2.14),

mgdz
e ) (19.1)

N(h) = N(O)exp(— . T

where m is the average molecular mass, g is the acceleration of free fall, and
T(z2) is the temperature at an altitude z. To determine the change of
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temperature with altitude, we can neglect heat transfer processes, and we can
employ the adiabatic law TN'~7 = const, where y = 1.4 is the adiabatic
exponent for air at the temperatures considered. This leads to d7/T =
(y = DdN/N, and from the barometric formula (19.1) we have dN/N =
~mgdz/T. Hence —dT/dz = mg(y — 1) = 14 K/km. The real value (10
K/km) is lower than this because of water vaporization in the atmosphere
and other heat transport processes. Nevertheless, the adiabatic model used is
suitable for estimations.

Heat transport in the atmosphere is primarily a result of convection. An
estimate for the heat flux resulting from thermal conductivity gives g =
kldT /dz] = 3 X 10" W /cm?, while according to Table 13.1, convection is
responsible for an average heat flux of 2 X 10~* W /cm?,

19.2 THE EARTH AS AN ELECTRICAL SYSTEM

In Chapter 12 we analyzed the processes in clouds that lead to formation and
separation of charged particles in the atmosphere. Below we shall consider
the electrical phenomena in the Earth’s atmosphere from another standpoint.
The Earth carries a negative charge. There must thus exist mechanisms in the
Earth’s atmosphere that lead to the acquisition of this charge. We begin with
an overview of the processes that cause electrical phenomena in the atmo-
sphere. Though it may seem strange at first glance, the charging of the Earth
occurs as a result of lightning. Charge-transfer processes in clouds that are
connected with charging and precipitation of drops (aerosols) lead to a
redistribution of the charges therein. The lower part of a cloud is usually
charged negatively, and the upper part positively. The electric potential of a
cloud can reach hundreds of millions of volts, causing breakdown of the air.
The discharge of a cloud to the Earth in the form of a lightning stroke is
accompanied by the transfer of electrical charge to the Earth. About 10% of
thunderstorms transfer a positive charge to the Earth, and 90% transfer
negative charge. The net result is that the Earth acquires a negative charge.

The electrical parameters of the Earth can be stated simply. Its electric
potential is about U = 300 kV, and the electric field strength near the Earth’s
surface is approximately 130 V/m. Since the electric field strength E and the
surface charge o of the Earth are connected by the relation E = 470, the
total charge of the Earth is ¢ = 47wR%e = R’E = 5.8 X 10° C, where R is
the Earth’s radius. The Earth as an electrical system is like a spherical
capacitor whose lower plate is charged negatively. In terms of this model, the
distance / between the plates of this capacitor, assuming the electric field
inside to be uniform, is / = U/E = 2.3 km. This estimate shows that the
processes responsible for the Earth’s charge occur in the lower layers of the
Earth’s atmosphere at altitudes of several kilometers.

Discharging of the Earth produces motion of ions. Measurements show
that the average current density over land amounts to 2.4 X 1072 A/m?,
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and over the ocean it is 3.7 X 1072 A /m?. This gives a total Earth current of
approximately / = 1700 A. Taking the average mobility of atmospheric ions
to be K = 2.3 cm?/(V cm), we find the average ion number density to be
N; = 300 cm 3,

We can estimate time scales for the electrical processes of the Earth.
Positive and negative ions recombine under atmospheric conditions by
three-body collisions, with an effective ion recombination coefficient of
a =2 X 107% cm?®/s (see Table 9.1). This corresponds to a recombination
time of about 7= (aN,)”! = 0.5 h. This contrasts with the much shorter
characteristic time g /I = 6 min for discharging of the Earth, where ¢q is the
Earth’s charge and [ is the average atmospheric current. During their
lifetime 7, ions travel a distance s = KET = 50 m, where K is the ion
mobility and E is the electric field strength near the Earth. Because this
distance is small compared to the size of the Earth’s layer where electrical
phenomena develop, there must be a mechanism for the generation of these
ions. The intensity of this process (i.e., the number of ions per unit time and
per unit volume) is given by aN;> = 0.1 cm 3 s™'. These ions are produced
by cosmic rays, mostly generated by the Sun. Maximum ionization is observed
at altitudes of 11 to 15 km, and is characterized by ionization rates of 30—-40
ecm ™3 s~!. This results in an ion number density of about 6 X 10° cm~?. (The
recombination coefficient is about 107® ¢cm?/s at this altitude.) To explain
the observed currents of charged particles formed, it is necessary that the
intensity of ionization in the lower atmospheric layers should be smaller than
this maximum by a factor of 100.

Atmosphere charging is a process ancillary to the circulation of water in
the atmosphere. Every year 4 X 10 tonnes (metric tons) of evaporated
water pass through the atmosphere, corresponding to 13 million tonnes of
water per second. This requires a power of 4 X 10'* kW. The power
associated with the passage of electric current through the atmosphere is
Ul =5 X 10° kW, where U = 300 kV is the Earth’s potential and I = 1700
A is the atmospheric current. Considering a cloud potential during a thun-
derstorm exceeding the potential of the Earth by a factor of 10°, then we find
that the power expended in the charging of the Earth is three orders of
magnitude greater than the power of the Earth discharging, but five orders of
magnitude smaller than the power consumed in the evaporation of water.
Therefore, the power expended on electrical processes during the circulation
of water in the atmosphere is relatively small.

To create the observed charging current, it is necessary that the charge
transfer should be 1.4 X 107! C per gram of water. Measurements show
that a water drop of radius 2 um suspended in a cloud carries an average
charge of 20e, corresponding to 107 C per gram of water. A drop of radius 6
pm suspended in a cloud acquires an average charge of 50e, corresponding
to 107% C per gram of water. Hence clouds of the terrestrial atmosphere
ensure the operation of the electrical machine of the Earth by causing its
charging.
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We now have the following picture of the operation of the Earth as an
electrical device. The electrical processes are a consequence of the circula-
tion of water in the atmosphere. At an altitude of several kilometers water
vapors are condensed into droplets—aerosols—that form clouds. Due to the
different mobilities of positive and negative ions in the atmosphere, these
aerosols are charged mostly negatively. In turn, positive and negative ions of
the atmosphere are formed under the action of cosmic rays. Negatively
charged drops fall under the action of gravity. The lower part of a cloud thus
develops a high electric potential. Discharge from clouds to the Earth in the
form of lightning strokes leads to negative charging of the Earth. The reverse
(discharging) process is due to the mobility of atmospheric ions under the
action of the Earth’s field.

19.3 LIGHTNING

Lightning is a powerful electrical breakdown between a cloud and the Earth,
between two clouds, or within one cloud. The length of the lightning channel
is measured in kilometers. Lightning is the most widespread electrical
phenomenon in the atmosphere. The action of lightning and the descent of
charged raindrops to the Earth leads to charging of the Earth. The average
charge carried by a single lightning stroke is about 25 C. If we assume that
all charging of the Earth is accomplished by lightning, we conclude that it is
necessary to have about 70 lightning strokes per second (i.e., about 6 million
lightning strokes per day) for maintenance of the observed charging current.
If we assume each lightning event is observable at a distance of up to 10 km,
then one can observe an average of 3 or 4 lightning strokes every day. In
actuality, the frequency depends on season and geographical location, but the
above estimate shows that this phenomenon is widespread.

We shall examine the distinguishing features of lightning as an electrical
discharge. The charge separation in a cloud results from the charging of
drops (aerosols) that subsequently descend. This leads to separation of
charge in a cloud, and creates an electric potential in the lower part of a
cloud that amounts to hundreds of millions of volts. The subsequent discharg-
ing of the cloud in the form of a lightning stroke leads to the transfer of this
charge to the Earth. The breakdown electric field strength of dry air is about
25 kV /cm, which exceeds by an order of magnitude the average electric field
strength between the Earth and a cloud during a thunderstorm. Hence,
lightning as a gas breakdown has a streamer nature. Random inhomo-
geneities of the atmosphere, dust, aerosols and various admixtures decrease
the breakdown voltage.

The first stage of lightning is creation of the discharge channel. This stage
is called the stepwise leader. The stepwise leader is a weakly luminous
breakdown that propagates along a broken line with a segment length of tens
of meters. A typical propagation velocity of the stepwise leader is of the
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order of 107 cm/s, and that, in turn, is of the order of the electron drift
velocity in the air in the fields under study.

After creation of the conductive channel, the electric current begins to
flow through it, and its luminosity increases sharply. This stage is called the
recurrent stroke and is characterized by a propagation velocity of up to
5 x 10° c¢m/s, corresponding to the velocity of propagation of the electric
field front in conductors. The recurrent stroke is relatively short. Its first
phase (the peak-current phase) lasts some microseconds, and the discharge is
complete in less than 107* s. During this time the current channel does not
expand, so that the released energy is spent on the heating of the channel
and ionization of the air in it. To estimate the temperature of the channel,
we take the charge passed to be Q = 2C, with an electric field strength E in
the channel of 1 kV /cm. The energy released per unit length of the channel
is QF, and the typical increase of the air temperature in the channel is

AT ~ QE/(c, pS), (19.2)

where ¢, ~ 1 J/g is the heat capacity of air, p ~ 107° g/cm? is its density,
and § ~ 100 cm? is the channel cross section (of radius ~ 10 cm). From this
it follows that AT ~ 2 X 10* K. This rough estimate makes clear that the air
in the lightning channel is highly ionized. At such air temperatures, radiative
processes restrict the subsequent increase of temperature. Usually, the tem-
perature of the lightning channel is about 30,000 K.

The recurrent stroke creates a hot lightning channel. Its supersonic
expansion creates an acoustic wave—the thunder. Equilibrium between the
conductive channel and the surrounding air is established, and then the
principal part of the atmospheric charge is carried through the channel.
The lightning current in this stage of the process falls drastically in time, and
the total duration of the recurrent stroke is about 1072 s. Then the conduct-
ing channel disintegrates. If during its decay a redistribution of charges in the
cloud has occurred, then the lightning flash can recur through this channel.
This can take place if the time interval from the previous flash is no more
than about 0.1 s. Then the new flash begins from the so-called arrowlike
leader, which is similar to the stepwise leader, but is distinguished from it in
that it travels the distance along the existing channel continuously, without
delay on each step as in the case of the stepwise leader. After the passage of
the arrowlike leader, a recurrent stroke occurs as in the first breakdown.
After some delay, breakdown may again repeat by passage of an electric
current through the existing channel. As a rule, one lightning stroke contains
several charge pulses through the same channel.

Lightning is of interest as an intense source of radiation. To find the maxi-
mum efficiency of transformation of the electric energy into radiation, we
assume that the conductive channel is a blackbody of temperature 30,000 K.
Then the radiation flux of the conductive channel is j = o T* ~5 X 10°
W /cm?, and the radiation flux per unit length of the channel is 27Rj ~ 10’
W /cm, where the channel radius is taken to be R = 10 cm. Since the above
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temperature is maintained during 7 ~ 10™* s, we have an estimated upper
limit for the specific radiation energy of £ ~ 10° J /cm. The electrical energy
per unit length of the lightning channel is QF = 2 kJ/cm. This rough
estimate leads to the conclusion that the electrical energy of lightning is
transformed very efficiently into radiated energy.

Another distinguishing feature of radiation emitted by the lightning chan-
nel relates to the role of UV radiation. According to Wien’s law, the
maximum radiation energy for a blackbody with a temperature of 30,000 K
occurs at wavelengths of about 100 nm. This estimate shows the possibility
for lightning to emit copious UV radiation, though in reality, due to the
limited transparency of an atmospheric plasma of the above temperature for
ultraviolet and vacuum-ultraviolet radiation, visible radiation constitutes the
principal portion of the radiation due to lightning.

19.4 PREBREAKDOWN PHENOMENA IN THE ATMOSPHERE

There is one more aspect of electrical phenomena in the atmosphere that we
want to analyze. As was noted above, the electric field strength of a cloud
during the occurrence of lightning is less by one or two orders of magnitude
than the breakdown strength at atmospheric pressure [about E = 25 kV /cm
(E/N = 90 Td) between plane electrodes], or the breakdown strength due to
propagation of a positive streamer (about 5 kV /cm). We shall consider some
reasons for this that extend our understanding of the nature of processes that
accompany electrical phenomena in atmospheric air.

Consider a chain of processes that can lead to breakdown. We shall
consider only one of several mechanisms in order to demonstrate the charac-
ter of these processes. Assume that atmospheric air is subjected to an electric
field of strength F, and elementary processes 11, 12, 17, 20, 23, 26, 40, and 41
of Table 19.1 are the determining factors. These processes lead to balance
equations for the number densities of electrons (N,), negative ions (N_), and
ozone ([O,]) that can be stated as

dN,

dtt = (Vion - Vut)Ne + N—[O3]k23’ (193)
dN _
= YulNe = kN2 = N_[0;]ks, (19.4)
d|O O
9] - M- [0, + 20y N,. (19.5)
dt T

We employ here the quantities v, = k;,[O,] + k,[N,], »,, = k5 [O,], and
Vs = ky[O,]. We assume that process 17 of Table 19.1 gives the main
contribution to recombination of positive and negative charges; we assume
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further that the number density of ozone molecules is relatively small, so that
the dissociation of an oxygen molecule leads automatically to formation of
two ozone molecules as a result of processes 40 and 41. The rate of ozone
formation is denoted by M, and 7 is the lifetime of ozone molecules.

Solving the system of equations (19.3) and (19.4) under the assumption
that N, < N_, the number densities of charged particles are given by

k;3 Vion k23 4
—= [0, N.=—~=

jon

e

[0,]. (19.6)

k17 (Vat - V'lon) k17 Vat — Vion

The subscripts in the rate constants correspond to the process numbers of
Table 19.1. The expressions (19.6) show that a reverse connection between
processes restores electrons. As a result, there are stable currents in atmo-
spheric air subjected to an electric field. At v, = v, an instability develops
that leads to breakdown in pure air. This will occur at E = 25 kV /cm, which
is the breakdown strength of dry air in the case of uniform currents.
However, the sequence of processes specified above leads to breakdown at
smaller electric fields. An increase of the ozone number density leads to an
increase of the electron number density, which in turn causes an increase of
the ozone number density. Then at certain sets of parameter values an
explosive instability can develop, meaning that breakdown has occurred. We
now seek the threshold for this instability.

For this purpose, we analyze Eq. (19.5). Substituting in it Eq. (19.6) for the
electron number density, we have

d[0,] N, [0,]

dt T

+ k[0, (19.7)

where N, = M7 is the ozone number density in the absence of the electric
field. The effective rate constant determined by the expression

2
2k33Vion Vs

kg=——"3
k17(Vat - Viun)

is the combination of the rate constants of the corresponding processes.
Under typical atmospheric conditions we have N, ~ 10'2 cm 3. The effective
rate constant k. depends strongly on the electric field strength. It has the
values 8 X 107" cm’/s at E/N =30 Td, 2 X 10~" c¢m’/s at 50 Td, and
6 X 107" cm’/s at 80 Td.

In the stationary case, Eq. (19.7) has two solutions, of which one is stable.
The instability corresponds to imaginary values for the solutions. Hence, the
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instability that leads to breakdown corresponds to the condition
ko > (4Ny7) . (19.8)

The real lifetime of ozone molecules in the atmosphere is rather large
(7 ~ 10° s), because ozone is produced at high altitudes (40-80 km) and its
loss results from chemical reactions (ozone cycles) or from transport to the
Earth’s surface. The parameter 7 in Eq. (19.8) refers to a time during which
an ozone molecule is located in a region with a large electric field. If we take
such a region to be a cloud of size L ~ 1 km, and the velocity of transport
from this region to be a wind velocity v ~ 1 m/s, then we have 7~ 10° s,
and the condition (19.8) gives k. > 2 X 107'® cm®/s. The above values of
k.; show that the chain of processes we are considering leads to a severalfold
reduction of the breakdown electric field strength.

We consider the ozone version of breakdown reduction to be merely
illustrative. Further, we are guided by a notion of breakdown as being
uniform, whereas breakdown in the atmosphere at large distances between
electrodes develops in the form of a streamer—a nonuniform ionization
wave—that requires lower threshold fields than uniform breakdown. Never-
theless, the above analysis exhibits important reasons for reduction of the
electric field required to cause breakdown in natural air. Other reasons
include heating of some regions of the atmosphere; presence of particles,
drops, or chemical compounds in the atmosphere; inhomogeneities of the
electric field; and so on. This listing exemplifies the wide variety of processes
that can influence atmospheric electrical properties.

19.5 IONOSPHERE

The history of exploration of the Earth’s ionosphere starts from Marconi’s
experiment in 1901 when he tried to establish radio contact between two
continents. The transmitter had been set up in Europe on the Cornwall
peninsula in England, and the receiver was located in Canada, on the
Newfoundland peninsula. From the standpoint of wave propagation theory,
this experiment seemed to be hopeless. According to the laws of geometrical
optics, radio waves should propagate at such distances with rectilinear beams,
and radio connection for these distances seemed to be precluded by the
spherical form of the Earth’s surface. The experiment led to a surprising
result: the signal was detected by the receiver and its intensity exceeded
estimates by many orders of magnitude.

The only explanation for this discrepancy was the existence of a radio
mirror in the Earth’s atmosphere that reflects radio waves. The radio-mirror
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TABLE 19.3. Critical Number Densities of Plasma Electrons
(N,,) for Propagation of Radio Waves

Type of Radio Waves Wavelength, m N,,cm™?
Long 10,000-1000 10-103
Medium 1000-100 10%-103
Short 100-10 10%-107

model assumes that waves follow rectilinear paths and repeatedly reflect
between the surface of the Earth and this upper-atmosphere mirror. In 1902
O. Heaviside and A. Kennelly proposed that the role of this radio mirror is
played by an ionized layer in the atmosphere. This fact was confirmed in
1925 by an experiment conducted by a group of English physicists from
Cambridge University. Placing the receiver at a distance of 400 m from the
transmitter, they determined by measurement of the delay time for the
reflected signal to arrive that the reflector is at an altitude of 100-120 km.
This reflecting layer, which was referred to earlier as the Heaviside layer, is
now called the E-layer (based on the symbol for the electric field vector for
radio waves). Subsequently, the existence of ionized gas was discovered at
other altitudes. The part of the atmosphere that contains ionized gases is
called the ionosphere.

The presence of electrons in the ionosphere prevents long electromagnetic
waves from propagating therein if their frequencies are smaller than the
frequency of plasma oscillations [see Eq. (15.21)]. Hence, radio waves reflect
from the ionosphere and return to the Earth’s surface. Table 19.3 summa-
rizes limiting electron number densities at which the plasma frequency
coincides with the frequency of plasma oscillations, so that longer radio
waves cannot propagate. The maximum electron number density of the order
of 10° cm ™ may be reached at an altitude of about 200 km. Therefore, the
best reflection conditions are fulfilled for short waves within the range of 30
to 100 m. Because the electron number density at any particular altitude
depends on season, time of day, and other factors, the quality of radio
communications at a given wavelength varies continually. Long waves are
reflected at low altitudes where the atmospheric density is relatively high,
and reflection of the waves is accompanied by damping.

It has been established over time that the atmosphere possesses several
ionized layers that differ in their properties. The lower D-layer occupies the
altitude region of 50 to 90 km. A typical number density of charged particles
therein is of the order of 10° cm™* The negative charge of the D-layer
arises primarily from the presence of negative ions, and a great variety of
both negative and positive ions reside there. In particular, the most
widespread positive ion is the cluster ion H,0*- H,O.



IONOSPHERE 315

!
Fy-layer
300 Positive
ions ~
200 Fy-layer
£
-
<
E-layer
100 -~ H,0"H,0
% T
80 4 TN
70 A e\,,’ D-layer
d
60 N /,
d
50 d . : >

Figure 19.1 Charged atomic particles in the upper atmosphere.

The next higher layer of the ionosphere, the E-layer, is at an altitude of 90
to 140 km. Charged particles of the E-layer are formed by photoionization of
air caused by solar UV radiation. These charged particles drift to lower
layers of the atmosphere and are the source of plasma in the D-layer. The
electron number density in the E-layer is of the order of 105 cm ™3, Negative
ions are nearly nonexistent in this layer, and the basic types of positive ions
are NO" and O," (see Fig. 19.1). The decay of charged particles in the
E-layer is due to dissociative recombination of electrons and molecular ions,
or to transport of charged particles to lower layers of the atmosphere.

A higher ionospheric layer, the F,-layer, is located at an altitude of 140 to
200 km. Above it (up to an altitude of about 400 km) is the F,-layer. The
electron number density in these F-layers is 10° to 10° cm 3. The basic type
of positive ions is O . Charged particles of the F-layers of the ionosphere are
formed by photoionization of atmospheric oxygen (the main component of
the atmosphere at these altitudes) due to solar radiation. Loss of electrons
from these layers is caused by photorecombination of electrons and oxygen
ions, photoattachment of electrons to oxygen atoms, and transport of elec-
trons to lower atmospheric layers.
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The E and F layers of the ionosphere, having a high number density of
electrons, are responsible for reflection of radio signals, constituting the
radio mirror. But their role is broader than this function. These altitudes are
the most convenient for operation of artificial satellites. Also, the interesting
physical phenomenon of the aurora is developed just at these altitudes.
Aurorae occur when a flow of solar protons penetrates into the atmosphere.
Charge exchange of these protons and their deceleration take place in the E
and F layers. The subsequent chain of elementary processes leads to forma-
tion of excited atoms, whose radjation is observed from the Earth as the
aurora.

One of the peculiarities of aurorae is that their radiation is created by
forbidden transitions of atoms and ions that cannot be detected in the
laboratory. In particular, processes 7 to 10 of Table 19.1 usually give the
principal contributions to the radiation of aurorae. Under laboratory condi-
tions, these excited states of atoms and ions are quenched by collisions with
air molecules. The probabilities for an excited atom to radiate and to be
quenched are equal at the number density of quenching particles given by
(k7)', where 7 is the radiative lifetime of the excited atom, and k is the
rate constant for collisional quenching. The excited oxygen atom O('S) is
quenched in the upper atmosphere mainly by atomic oxygen (process 38 of
Table 19.1), and the threshold number density of oxygen atoms is 2 X 10"
cm 3. In the case of O('D), the main quenching mechanism in the iono-
sphere is process 36 of Table 19.1. This gives the threshold number density of
nitrogen molecules as 10® cm 3. If the number density of quenching particles
is lower than the above values, radiation of the corresponding excited atoms
may be significant.

19.6 ATOMIC OXYGEN IN THE UPPER ATMOSPHERE

Atomic oxygen is one of the basic components of the upper atmosphere, so
we shall examine those processes that determine its relative abundance in the
atmosphere. Formation of atomic oxygen results from photodissociation of
molecular oxygen (process 4 of Table 19.1) by solar radiation in the spectral
range of 132 to 176 nm (corresponding to the photon energy range of 6 to
10.3 eV). This absorption range is called the Schumann-Runge continuum
and is characterized by cross sections of 107" to 107" cm? The
Schumann-Runge continuum is the determining factor in the generation of
atomic oxygen at altitudes higher than 120 km. At lower altitudes, up to
h = 80 km, the generation of atomic oxygen is accomplished mostly by
dissociation of oxygen molecules due to the weak Herzberg continuum in the
wavelengths range of 140 to 175 nm, where the absorption cross section is
less than 2 X 10™%* cm?.

The recombination rate for two oxygen atoms in three-body collisions
decreases as the altitude increases, and hence the concentration of atomic
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oxygen grows. The number density of atomic oxygen becomes equal to the
number density of molecular oxygen at altitudes of 100 to 120 km, and atomic
oxygen matches the number density of molecular nitrogen at altitudes of 150
to 200 km. For comparison, we note that the average total number densities
of nitrogen and oxygen molecules vary from 7 X 10" to 3 x 10° cm~3, and
the number density of atomic oxygen is in the range of 6 X 10" to 4 x 10°
cm 3 as the altitude varies from 100 up to 200 km. Thus, atomic oxygen is
one of the basic components of the upper atmosphere at very high aititudes.

To analyze the absorption of short-wave solar radiation as a result of
photodissociation of molecular oxygen, we write the balance equation for the
intensity [, of solar radiation of a given frequency in the atmosphere in
the form

dl,/dz = —1,5,[0,], (19.9)

where z is the altitude, [O,] is the number density of molecular oxygen, and
g, is the photodissociation cross section. We assume that solar radiation is
incident perpendicularly on the Earth’s surface, and that the number density
of molecular oxygen varies according to the barometric formula (2.14):
[0,1= N,exp(—z/L), where L = T/mg = 10 km. Then the solution of

equation (19.9) is

I(z) = 1(x) exp[—exp(—— i —LZ“ )] (19.10)

where /() is the intensity of solar radiation above the atmosphere, and the
altitude z, is determined by the relation o, L[O,)(z,) = 1. Equation (19.10)
shows that the principal portion of the solar radiation of this part of the
spectrum is absorbed near z,. Because the photodissociation cross section is
in the range of g, ~ 10™" to 107" cm?, this absorption takes place at
altitudes where [0,] ~ 10'' to 10" cm™?,

It is instructive to compare a decay time for the photodissociation of
molecular oxygen and the characteristic time for transport of molecular
oxygen to the altitudes at which absorption occurs. A typical dissociation

time is
1 rdl, o] ) 106
o~ = ~ 2 X
Tas <1 f h S

where the factor 1 results from averaging the radiation flux over the entire
surface of the Earth, and fw = 6-10 eV is the photon energy. The drift
velocity of an atom or molecule as a result of its own weight is, according to
the Einstein relation (10.14),

Dmg m ' 3x10%cm s
~ (19.11)

w=—T——~g(Na;g T N )
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where we use the estimate (10.6) for the diffusion coefficient D of oxygen
atoms and the quantity g, =3 X 107" cm? is about the magnitude of a
gas-kinetic cross section for atmospheric molecules and atoms. In this expres-
sion, N is the number density of atoms and molecules at some given altitude
in the atmosphere. Assuming molecular nitrogen to be the primary compo-
nent of the atmosphere at altitudes of maximum photodissociation, we have
[0,] = N/4. Because the concentration of molecular oxygen is about [O,] ~
10" em™3, a typical transport time is 7, ~ L/w ~ 10* s. This gives the
inequality 7, < 7, so that the photodissociation process does not disrupt
the barometric distribution of molecular oxygen at altitudes where photo-
absorption of solar radiation takes place. The quantity 74 is a characteristic
drift time.

To estimate the number density of atomic oxygen, we can compare the
flux w[O] of oxygen atoms and the rate of their formation, which is of the
order of the flux of solar photons causing photodissociation. This flux 7 is
I~3%10"% cm~2 s7! at optimum altitudes. The number density of atomic
oxygen is

[O] ~I/w ~0.IN (19.12)

at altitudes where it is formed, where Eq. (19.11) for the atom drift velocity
has been used. From this it follows that the concentration of atomic oxygen
(~ 10%) mechanisms for loss of atomic oxygen become weak. Decay of
atomic oxygen is determined by the three-body process for recombination of
atomic oxygen (20 + M - O, + M, where M = N,, O, or O,). The maxi-
mum number density of atomic oxygen [O],,, is observed at altitudes where
a typical time for the three body association process is equal to the time for
atomic transport to lower layers. This correspondence gives

w[o]max/L ~ K[O]riax N.

Because the magnitude of K is K ~ 1073 cm®/s, we obtain [O],, ~ 10"
cm™3. Part of the atomic oxygen penetrating to lower layers in the atmo-
sphere is transformed into ozone by processes 40 and 41 of Table 19.1. Thus,
the photodissociation process in the upper atmosphere leads to a high ozone
concentration (up to 10™*) at altitudes of 40 to 80 km.

19.7 IONS IN THE UPPER ATMOSPHERE

Ions in the upper atmosphere such as N,*, O,", O*, and N* are formed by
photoionization of the corresponding neutral species. The spectrum of solar
radiation in the vacuum-UV range that is responsible for ionization of
atmospheric atomic particles is created by the solar corona. Hence the
intensity of this radiation can vary over a wide range. The average flux of
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photons in the portion of the spectrum at less than 100 nm is about
2.4 % 10" ecm™2 s~ . The principal consequence of this part of the spectrum
it to cause Lyman-series transitions of atomic hydrogen, including the Ryd-
berg spectrum and the continuum. The contribution in the spectral range of
84 to 103 nm averages about 1.3 X 10" ecm~? s~'. Among the more notable
processes are the transition of C 11 at 99.1 nm (9 X 108 cm™? s7!), the
transition of C 11 at 97.7 nm (4.4 X 10° cm~2 s™!), the transition of O Vv at
63 nm (1.3 X 10° cm 2 s7!), the transition of He 1 at 58.4 nm (1.3 X 10°
m~% s7!), and the Lyman transition of Hen at 30.4 nm (7.7 X 10° c¢m~?
s~'). The maximum rate constant for the generation of electrons as a result
of photoionization processes occurs at an altitude of about 160 km and is
4 x10% cm™3 7L

We can make rough estimates of the number density of charged particles
at middle altitudes where the photoionization rate constant has a maximum.
The photoionization cross section is o, ~ 107'%-10""7 c¢m?, so that the
number density of molecules is N,, ~ (. L)™' ~ 10"-10'2 cm™* at alti-
tudes where photoionization occurs. The number density N, of molecular
ions at these altitudes follows from the balance equation aN,N, ~ I /L
(where o is the dissociative recombination coefficient of processes 13 to 15
of Table 19.1), and I,,, ~ 2 X 10" ¢cm™2 s~! is the flux of photons whose

on

absorption leads to photoionization. From this it follows that

Iion
N~y T ~5x10%em™, (19.13)

! o

This corresponds to the maximum number density of ions in the atmosphere.
The number density of molecular ions of the lower layers of the atmosphere
follows from the balance equation

wN,/L ~ aN?.

This gives the number-density relation N;N,, ~ 10" cm~®, where N_ is the
number density of molecular nitrogen.

A typical time for establishment of the equilibrium for molecular ions
that leads to the estimate (19.13) is 7,,. ~ (aN,)™' ~ 20 s, whereas a charac-
teristic ion drift time for these altitudes is 7, ~ 10* s. Therefore, local
equilibrium for molecular ions results from the competing ionization and
recombination processes. Because of the short time for establishment of this
equilibrium, the number density of charged particles for daytime and for
nighttime is different. The above estimate refers to the daytime atmosphere.
The ion number density of the nighttime atmosphere follows from the
relation aN;t ~ 1, where ¢ is the duration of the night. This gives the
estimate N; ~ 102~10° cm™3 for the nighttime atmosphere.

Atomic ions formed as a result of the photoionization process participate
in ion—molecular reactions listed as processes 27 to 30 of Table 19.1. A
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characteristic time for these processes is 7~ (kN)™' ~ 0.01-10 s, and is
small compared to a typical recombination time. This explains the fact that
ions of the ionosphere are molecular jons. (See Fig. 19.1.) In addition, it
shows the origin of molecular ions NO*. These ions cannot result from
photoionization because of the small number density of NO molecules.

Atomic ions found at high altitudes are there because of the short
transport time required. We can estimate the maximum number density of
oxygen atomic ions by comparing a typical drift time L /w and a characteris-
tic time for ion—molecular reactions listed in Table 19.1, measured by
(kIN,D~'. Assuming the basic component of the atmosphere at these alti-
tudes to be atomic oxygen, we find that the maximum number density of
atomic ions O* occurs at altitudes where [N,]O] ~ 3 X 10" e¢m~°. This
corresponds to altitudes of approximately 200 km. The maximum number
density N, of atomic ions follows from the balance equation

[O]fa-ion dlion ~ k[N2]N|
=2x%x10""7s7!, s0

For photoionization of atomic oxygen, we have [ay,, dI,,
that the maximum number density is

N; ~ (2 x 10°em™)[O]/[N,] ~ 10% cm™3. (19.14)

In higher layers of the atmosphere the number density of atomic ions is
determined by the barometric formula, because it is proportional to the
number density of primary atoms, and declines with increasing altitude.

At altitudes where photoionization occurs, the negative charge of the
atmospheric plasma comes from electrons. In the D-layer of the ionosphere,
electrons attach to oxygen molecules in accordance with processes 20 to 22 of
Table 19.1, and it is negative ions that govern the negative charge of the
atmosphere. At the altitudes where this transition takes place, the balance
equation wN,/L ~ KN,[O,]* is appropriate, where K ~ 107 ¢m®/ s is the
rate constant of processes 20 and 21 of Table 19.1. From this it follows that
formation of negative ions occurs at altitudes where N[O,]* ~ 3 x 10%
em™?, or [0,] ~ 10" cm™3. We account for the coefficient of ambipolar
diffusion of ions being of the order of the diffusion coefficient of atoms. In
the D-layer of the ionosphere, recombination proceeds according to the
scheme A~ + B"— A + B, and is characterized by a rate constant of about
a ~ 107° ¢cm®/ s. This leads to the relation

NN, ~ 10" cm™ (19.15)

for the number density of ions, N;.

Thus the properties of the middle and upper atmosphere are established
by processes in excited and dissociated air involving ions, excited atoms, and
excited molecules.



CHAPTER 20

GAS-DISCHARGE PLASMAS

20.1 PROPERTIES OF GAS-DISCHARGE PLASMAS

The passage of an electric current through a gas as the result of an external
electric field is called a gas discharge. In the region where the electric current
flows, a gas-discharge plasma is formed. Its properties are dependent on both
the external electric fields and the geometry of the gas discharge. The most
commonly encountered types of gas discharges are glow and arc discharges
that take place in a cylindrical tube subjected to a constant electric field. The
distinctions between glow and arc discharges arise from the manner in which
electrons are generated near the cathode. In a glow discharge, the emission
of electrons from the cathode is caused by secondary electrons arising from
ion bombardment of the cathode; while in an arc discharge, electrons are
formed by thermoemission and auto-electron-emission processes on the
cathode.

Figure 20.1 gives, in schematic form, the distribution of electric field
strength in a glow discharge established in a cylindrical discharge tube. The
main regions of the discharge are a cathode region (or cathode layer), where
electrons are generated to compensate their removal on the anode; an anode
region, where ions are formed; and the positive column, where a uniform
plasma exists. If the length of the discharge tube is altered, the sizes of the
cathode and anode regions are preserved, with the length variation confined
to the positive column.

The plasma in the positive column has practical applications because of its
uniformity. This type of plasma is used in light sources, in gas lasers, and for
plasma-generated chemical processes. Properties of a positive-column plasma,
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Figure 20.1 The spatial distribution of the electric field strength for a glow discharge
in a tube.

including the distribution of charged and excited atomic particles, are deter-
mined by processes in which these particles play a central role, and will be
considered below.

20.2 ELECTRONS IN THE POSITIVE COLUMN
OF A GLOW DISCHARGE

The positive column contains a self-consistent plasma where an equilibrium
is established between formation and decay of participating atomic particles.
Under the simplest conditions, when the gas temperature is constant over the
tube cross section, electron-number equilibrium in the positive column of a
cylindrical discharge tube is sustained by the release of electrons formed as a
result of electron impact, balanced by their removal through transport to the
walls. These conditions are more or less fulfilled in the positive column of
glow discharges where the electron number density lies approximately within
the limits N, ~ 10° to 10'2 cm 3, corresponding to a Debye-Hiickel radius in
the range r, ~ 1 to 3 um. We assume below that the mean free path for
both electrons and atoms is small compared to the tube radius r,. For ry ~ 1
cm, this requires a gas pressure p > 107° atm at room temperature.

To determine the distribution of the electron number density over the
cross section of a cylindrical discharge tube of radius r, under the above
conditions, we balance the formation of charged particles arising from atomic
ionization by electron impact against losses by transport to the walls of the
discharge tube in the regime of ambipolar diffusion. The electron number
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density satisfies the balance equation

D, AN, + k,,, NN, =0, (20.1)
where D, is the ambipolar diffusion coefficient, N, is the atom number
density, and k., is the rate constant for atomic ionization by electron
impact. Owing to the cylindrical symmetry, this equation reduces to

+ ks N,N, = 0. (20.2)

p dp 0on

D, d( dN,
p dp

Here p is the distance from the axis of the discharge tube. Using the
boundary condition N,(r;) = 0 and taking the parameters D, and &, to be
independent of p, we find the electron number density

N,

ion

D

a

, (20.3)

N(p) = Nofo( p

where N, is the number density of electrons at the axis and J,(x) is the
Bessel function. The boundary condition N,(r,) = 0 yields

Nk, ré/D, = 5.78. (20.4)
This is essentially the relation between the rate of electron formation
(~ N,k,,) and the rate of electron transport to the walls (~ D, /rg). This

condition allows one to write the expression (20.3) in the form
N p) = NoJo(2.405p/r,). (205)

The boundary condition is then automatically satisfied. A simple approxima-
tion for the Bessel function, valid to an accuracy of 8% has the form
Jo(2.405p/r)) = 1 — (p/ry)***. The regime in which Eq. (20.5) is valid is
known as the Schottky model. This model corresponds to small discharge
currents when the electron number density is relatively small. Then the
balance equation (20.1) is linear with respect to N,, and the gas temperature
is constant over the cross section of the discharge tube. This leads to the
simple expressions (20.3) and (20.5) for the electron number density.
The average lifetime 7, of an electron in the plasma is given by

1

————| 2mpdpN,(p),
2ar,j(ry) '[

T =

where the integral is the average number of electrons per unit length of the
discharge tube, and the denominator is the number of electrons that reach



324 GAS-DISCHARGE PLASMAS

the walls per unit time and per unit of tube length, with j the flux of
electrons towards the walls. Because

dN,(r,)  1.25D,N,
a dp - rO ’

,
[2mpdp N.(p) = 1.36Nyrd,
0

we have

1.36 Nyrg  0.173r¢ 1 206
T 2@ D, Nk (20.6)

a ion

To understand the connection between N,( p) and the physical character
of the processes in a plasma, we shall consider the case when the formation
of electrons passes through a metastable state. Then, instead of the balance
equation (20.2), we have the set of equations

d { dN, 5
4D”E(x pp ) + Kkign NN =0,
(20.7)

d{ dN, ,
4Dma(x I ) +k NNry=0,

where x = p?/ri, N, is the number density of metastable atoms, k., is the
rate constant for excitation of the metastable state by electron impact, k;,, is
the rate constant for ionization of a metastable atom by electron impact, and
D,, is the diffusion coefficient of a metastable atom. The equation system
(20.7) is accompanied by the boundary conditions N,(r,) = N, (r;) = 0. Let
us take the number densities of electrons and metastable atoms in the
approximate form

N,=Cye ™ =e™),  Ny=Cye? —e™).

The parameters of this equation can be found from the balance equations
(20.7) for x = 0, and from these balance equations integrated over dx. To
ascertain the accuracy of this procedure, let us apply it to Eq. (20.2). Then we
obtain a = 0.842 and

Nkion ré 4a
D =

a

— =5.9.

1—e
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[Compare this with Eq. (20.4).] The above procedure gives
a = 1.410,
b = 0.951,

N,kri/D,, = 1550, (20.8)

N, (0)k,,ri/D, = 1.865.

The relations (20.8) reflect the fact that typical times for formation of
electrons and metastable atoms are equal to typical times for their transport
to the walls, In addition, solution of the equations gives

' p, o) Lyon N0
Jm = m dp - ro . m m( )’
dNe(rO) 1
j,=-D, = —0.91D,N,(0)
dp ro

for the particle flux at the walls.

20.3 DOUBLE LAYER

We have seen that in a gas-discharge plasma where the mean free path of
charged particles is small compared to the dimensions of the discharge,
transport of charged particles to the walls in most of the positive column is
governed by the ambipolar diffusion process. (See Chapter 11.) This means
that an electric field arises in the plasma that decelerates electrons and
accelerates ions. Electron and ion fluxes tend to equalize, and the plasma is
almost quasineutral. This takes place up to distances from the walls of the
order of the mean free path of charged particles.

We now examine the behavior of the plasma near the walls. Introducing
the electron and ion temperatures 7, and T;, the electron and ion fluxes to
the walls, j, and j;, are

i, =N L . = N, d 20.9
Je = N, 277me ’ Ji =1V 27Tmi ’ ( . )

where N, and N, are the electron and ion number densities near the wall,
and m, and m; are the electron and ion masses. Because the fluxes of
electrons and ions must be equal at the walls, Eq. (20.9) shows that the
plasma can no longer be quasineutral near the walls. An electric field arises
that slows the electrons. This phenomenon is known as the plasma sheath.

The equality of the electron and ion fluxes gives the difference U of the
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electric potentials of the plasma and walls [N, ~ exp(—eU/T,)] as

U Tel Lem, 20.10
eU=—1In Tm, )" (20.10)

The transition region between the plasma and the walls is called the double
layer. The appearance of a double layer is a widespread phenomenon
observed on the boundary between a plasma and another state of matter.

20.4 THERMAL REGIME OF GAS DISCHARGES

The electric current of a gas discharge causes plasma heating that leads to a
temperature increase along the axis of the discharge tube. We shall analyze
this process for the positive column of a cylindrical discharge tube where the
shape of the temperature distribution over the cross section remains constant
along the tube. Assuming the heat transfer to be determined by thermal
conductivity leads to the heat balance equation

1 d

s +p(p) =0 (20.11)

dTr
(pK(T)*—

in a cylindrical discharge tube, where « is the thermal conductivity coeffi-
cient, E is the electric field strength, and p( p) = iE is the specific power of
heat release, meaning that i is the current density. Hence, this equation may
be represented in the form

1 d

P +3E? =0, (20.12)

dT
(pK(T)*—

where 3 is the plasma conductivity. Equation (20.12) is known as the
Elenbaas-Heller equation. A simple solution of this equation that
corresponds to the so-called parabolic model has the form T =
T, + SE*(ri — p*)/(4k). 1t is valid when both the plasma electrical and
thermal conductivity are constant over the cross section of the discharge
tube.

For a more precise determination of the tem 7perature distribution, it is
convenient to introduce the new variable Z = [ (T)dT where T, is the
temperature at the axis. Introducing the variable x = p?/rZ, we have

d (| dZ re
(x—) Py, (20.13)
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The solution of this equation allows one to determine the temperature
difference between the axis and the walls. Taking the specific power of heat
release to be proportional to the number density of electrons, we use it in the
form p = py(1x"®") that corresponds to the Schottky regime (20.5) of a
low-current positive column. The discharge power per unit tube length is

(rO) dZ(x = 1)
W—dx‘—-.

= —27ryx(T,)
Thus, we have xdZ /dx = p,ri(x — x”’7/1.67)/4, and
z = ["k(T)dT = 0.13P.
TW

This relation gives the difference between the temperatures of the axis and of
the walls of the discharge tube for the distribution (20.5).

In a more general case of the electron distribution over the tube cross
section, we can approximate the distribution of the specific heat release over
the cross section by the expression p = p {1 -~ (p/ry)"]. Then the power of
heat release per unit tube length is

dT(ry) dZ(x = 1) n
= 4r— :
dp dx

TP

P = 277r0( —K
If we define the function g(n) = [; ']K(T) dT /P, then g(n) lies within the
limits g(0) = 0.16 and g = 0.13 for “the distribution (20.5). Thus, with an
accuracy of about 10%, we have
«(T,) - T, «(T,)

T{) TO W
T)dT = = 0.14P. 20.14
fTWK( ) l+dink/dInT ( )

In particular, if the difference of the temperatures is small (AT =
T, — T, < T,), this relation yields

AT = 0.14P/«k. (20.15)

Thus, heating of a gas in a tube with an electric current is not sensitive to
the distribution of this current over the tube cross section, and is determined
mostly by the total released power inside the tube.

20.5 POSITIVE COLUMN OF A GAS DISCHARGE
AT HIGH PRESSURE

We shall now consider a commonly encountered regime of gas discharge in a
cylindrical tube in which the gas pressure is of the order of one atmosphere
and electric currents are large. Though, according to their definitions, glow
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and arc discharges differ only by the nature of electron emission at the
cathode, high gas temperatures cause this regime to be that of an arc
discharge.

There are two special aspects of the discharge we are treating. First,
thermodynamic equilibrium exists at each point in the plasma due to the
large number density of electrons and atoms. This allows us to define both
the gas temperature 7 and the electron temperature 7,. Second, thermal
processes are of importance because of the high currents. Therefore the
analysis of this regime is based on the heat balance equation (20.11) which
now has the form

1d ( (T)dT) 1 d ( (T)dTe
—5 | PK — |+ = pKA1L,)
pdp dp pdp dp

where «(T) is the thermal conductivity coefficient of the gas, «(7,) is the
electron thermal conductivity coefficient, and p(p) =iE is the specific
power of heat release. Along with heat transport due to thermal conductivity
of the gas, we also account for electron conductivity in this equation.

Because thermodynamic equilibrium exists, the electron number density at
each point is given by the Saha relation

Nez 8.8 meTe 2 J 20.17
e Eerd B (20.17)

a e

+p(p) =0, (20.16)

as in Eq. (2.17). Here g,, g;, and g, are the statistical weights of the electron,
ion and atom, respectively, and J is the atomic ionization potential. The
difference between electron and gas temperature is given by Eq. (9.44),

2,2
S M(f) /v (20.18)

T=— —
¢ 3\m,| (v
where 7T is the gas temperature, M is the mass of the atom, and the
averaging indicated by the angle brackets is done on the basis of the Maxwell
distribution function for electrons. In particular, in the case when the

electron-atom collision frequency does not depend on electron velocities,
Eq. (20.18) gives

T, - T = 1Mw?. (20.19)

The electron drift velocity is determined by Eq. (943) to be w =
(eE /3T,){v*/v), which in the limiting case » = const takes the form w =
eE /(m,v). These relations connect plasma parameters, and will be the basis
for our analysis.
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The validity condition for the regime being analyzed is that local ioniza-
tion equilibrium exists, and has the form 7., < 7, where a typical time for
three-body electron-ion recombination is 7,,. = (KN,2)"!, and a typical time
for charged particles to drift to the walls is 7, = r2 /(5.8 D,). [See Eq. (20.4).]
The three-body electron—ion recombination coefficient is K = K,/T/? ac-
cording to Eq. (5.16), K, has the value 2.0 X 107% cm® K%?/s, T, is the
electron temperature, r, is the tube radius, and the coefficient of ambipolar
diffusion is given by Eq. (11.31) as D, = D,(1 + T,/T), where D, is the ion
diffusion coefficient. Thus the condition for the existence of local ionization
equilibrium can be written in the form

Tae/ Teee = TANaNF(T, T,) > 1, (20.20)

The function f(T,T,) in Eq. (20.20) depends on the identity of the gas. This
function, when expressed in units of 10~ cm’, has the value 30 for argon at
T =2000Kand 7, = 6000 K; it is 7.0 for T = 3000 K and 7, = 8000 K; and
it is 2.3 for T = 4000 K and 7, = 10,000 K. As follows from Eq. (20.18), the
regime being considered corresponds to large number densities of electrons
and atoms. In addition to the condition in Eq. (20.20), the constraint

T. <J. (20.21)

must also be satisfied.

Since the electron number density is estimated from the Saha formula as
N, ~ expl—J/(2T,)], it follows from Eq. (20.21) that the plasma is concen-
trated in a region of the tube where the electron temperature is close to its
value on the axis. Then it is convenient to introduce the new variable

[7.(0) - T.(p)]
y= T770) : (20.22)

Taking into account the strong dependence of the electron number density
on the electron temperature, of the form N(p) = N(0)e™, one can neglect
the temperature dependence of other parameters of the discharge as, for
example, the thermal conductivity coefficient of the gas. Then p(p) =
p(0)e™, k, ~ N, ~ ¢, and, introducing a new variable x = p2/rZ, we have
reduced Eq. (20.16) to the form

d Yy d Ae ™ =10 20.23
E(x(e-+{)a)~e--. ( )
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The parameters ¢ and A introduced in Eq. (20.23), given by

Tx(T) pordl
T k(1) " BT(T,)’

(20.24)

govern the plasma distribution over the tube cross section; here a =
dT(p)/dT(p). In vparticular, if the velocity dependence for the
electron—atom collision frequency goes as v ~ v?, we obtain

1+ B-BT/T,
RERRTY 7

Only values of the parameters at the discharge-tube axis are included in the
relations (20.24).

We consider first the case ¢ > 1, when heat transport is determined by
the thermal conductivity of the gas. Then Eq. (20.23) has an analogy with the
Fock equation in radio-frequency applications, and we use its solution

Ax
1+ —

=21
y=2In 5

. (20.25)

This solution leads to the distribution of the electron number density over
the tube cross section given by

-2

2
N.(p) = N(0)e™ = N(O)[1+ 55 |
’ (20.26)
, 16T Tx(T)
Po = Po/ .

If the parameter p, that characterizes the size of the plasma region is small
compared to the tube radius r,, then contraction of the discharge current
takes place. This deduction confirms that the discharge contraction in this
case is determined by thermal processes in the plasma. These relations give
the power of an arc discharge as

16T Tx(T) a

5 (20.27)

P=]JE = fpoe‘-v 2mpdp =

Equation (20.27) establishes the connection between the discharge power and
plasma parameters at the center of a discharge tube.
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Consider the other limiting case ¢ < 1. In a region y < In(1/{), where
the plasma is mostly concentrated, Eq. (20.16) transforms to

d(dY

_x_d_x

+AY =0 20.28
%) (20.28)

in terms of the new variable Y = N,(p)/N,(0) = e™. The solution of this
equation is

Y = Jy(2VAx). (20.29)
From this we obtain

P=IE = prY 2mpdp = 1.36p, p? (20.30)

for the total discharge power, where

5.78r; 12T« (T,)

-

] 20.31
Po A4 Pot ( )
The total discharge power in this limiting case is thus
16T€2K€(T€)
P=]E = — (20.32)

One can combine Eqs. (20.27) and (20.32). This leads to an expression for
the discharge power that is valid for both limiting cases in {, and hence takes
into account both the gas and the electron thermal conductivity:

o I6TA(T)(1 +320)

; (20.33a)

In the same way, one can introduce the plasma radius in a general case. The
plasma radius can be found from the expression

fNK 2mpdp = 1.36N, p¢.

This relation corresponds to the discharge-tube radius in the Schottky case of
small electric currents in a discharge tube. The discharge-tube radius within
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the Schottky model for both limits in ¢ gives the plasma radius

, 12T (T,)(1 + 3.2¢)
Py =
Pol

(20.33b)

in general.

Each of the above regimes of heat transport in an arc plasma gives rise to
a scaling law for plasma parameters. In the case { < 1, when the heat
transport is determined by the thermal conductivity of the gas, we have

k, ~N7',  E~N, p,~N?  p,~N',
OV ) (20.34a)
~ , ~ , 1 = const.

In the other limit, ¢ > 1, when heat transport is determined by the electron
thermal conductivity, we obtain the scaling properties

E ~N, ~N¥2 py~ N4,
Po ’ (20.34b)
P=const, I~N!' — ny~NY2

As a consequence of the strong dependence of the electron number
density on the electron temperature, we can reduce the problem of the
distribution of plasma parameters over the tube cross section to the expres-
sion of this distribution in terms of plasma parameters on the axis of the
discharge tube. An essential property of the plasma being analyzed is its
tendency to contract to the tube center. This phenomenon was considered
above (Chapter 18) as an ionization—thermal instability. The explanation for
this property comes from the conflict between a weak temperature depen-
dence of the rate of heat removal and a strong temperature dependence of
the heat release. To compensate for the strong heat release, the plasma
becomes compressed and increases heat removal by an increase of the
temperature gradients. We have obtained the analytical expression (20.33b)
for the plasma radius in this type of discharge, and also (20.33a) for the
discharge power per unit length of a discharge tube. These expressions
confirm the above conclusions.

To examine more closely the contraction of the arc discharge, it is
convenient to introduce the variable

z= [Ty a1 + ["k(T") dT"

2

-4

2T
= 51 (T) + Te(T)(1 + 7), (20.35a)

where T, and T are the electron and gas temperatures at the axis, y=

[

dIn x(T)/dT, and we assume the electron and gas thermal conductivities at
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the tube axis to be greatly in excess of those near the walls. Integrating Eq.
(20.16) twice, we get

ro o P 2.3r
Z=j(;p(p)pdpln;=§ln 0

(20.35b)
Po

Here P is the total power per unit length of the tube, and p, is the current
radius. If we now use the expression (20.33a) for the specific discharge power
and compare it with Eq. (20.35a), we can find the contraction of the positive
column plasma. When { < 1—that is, when the electron thermal conductiv-
ity is dominant—Egs. (20.35a) and (20.32) give

T; P

4 2T, T
= Ke(e)—"g’

J

and the relation (20.35b) can be fulfilled only at p, = r,. That is, there is no
contraction of the current in this case. The reason for this is connected with
the equivalent behavior of the electric current and the heat transport. In the
case { > 1, contraction of the arc current is possible, and the current radius
p, follows from Eqgs. (20.26), (20.27), and (20.35a). The current radius is
determined by the equation

0; 0 JT  «
1+ -5 In[1 + 5| =73 . (2036)
ro Po 4T 1+ vy

From this it follows that the contraction of the current occurs at small gas
temperatures and currents when the gas thermal conductivity is not enough
to remove the released heat; and the electron number density is small, so
that the electron thermal conductivity is correspondingly small.

The analytical expressions for parameters of the discharge allow us to
analyze explicit examples, as in the inert gases Ar, Kr, and Xe. Cross sections
for elastic scattering of electrons on atoms of these gases are characterized
by a deep minimum at energies of approximately 0.6 to 0.8 eV. This
phenomenon is known as the Ramsauer effect. The minimum cross section is
less than the cross section at zero electron energy by about two orders of
magnitude. The Ramsauer effect leads to a specific instability. Equation
(20.18) can be written in the form

T, - T=EF(T,),

where E is the electric field strength and F(T,) has a strong maximum in the
temperature region corresponding to the Ramsauer minimum. Hence E(7))
is a double-valued function; that is, two values of the electron temperature
correspond to the same electric field strength. The analysis of this phe-
nomenon is akin to that for thermal explosion (Chapter 14). The lower of the
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two electron temperatures corresponds to an unstable state, so that this type
of discharge in the inert gases Ar, Kr, and Xe exhibits a minimal electron
temperature, with no discharge possible at lower temperatures. Next, because
of the temperature dependence (20.33a) of the discharge power, this dis-
charge in the inert gases Ar, Kr, and Xe can exist starting from a specific
threshold power. Thus, particulars of the collisions between electrons and
atoms establish the specific properties of the discharge.

20.6 POSITIVE COLUMN OF LOW-PRESSURE DISCHARGES

By definition, the plasma of a low-pressure gas discharge satisfies the
inequalities

rp < L <A, (20.37)

where L is a characteristic dimension of the discharge, A is the mean free
path for plasma particles, and rp, is the Debye—Hiickel radius of the plasma.
To show that such a discharge plasma can occur under realistic conditions,
we give an example of typical parameters: electron number density N, ~ 10"
cm 3, atom number density N, ~ 10'° cm™?, electron temperature 7, ~ 1
eV, and size of the positive column L = 0.1 cm. It follows from these
parameters that A ~ 1 ¢m, and rp ~ 5 X 107> cm, so that the criteria (20.37)
are satisfied for this plasma. These are typical parameters for plasmas in
thermoemission converters.

For simplicity, we consider such a plasma located between two infinite
plane electrodes. Because of the high number density of charged particles,
typical dimensions of the cathode and anode regions are small, and the
positive column with its quasineutral plasma occupies almost all of the space
between the electrodes. This plasma displays well-defined qualitative charac-
teristics. First, electrons and ions of this plasma travel to the walls, and
equilibrium in the positive column is established by ionization of atoms by
electron impact. For this reason, the presence of a neutral component in the
positive column is of importance. Second, the electron velocity is typically
larger by about two orders of magnitude than that of the ions. Hence, a
potential well is created in the positive column for conservation of the plasma
quasineutrality, and electrons are trapped at least partially in this well.
Taking this into account, we can evaluate currents of charged particles that
are formed in the positive column and travel to the electrodes. We note that
the energy balance of this discharge is determined by phenomena near the
electrodes, and we set this matter aside for later consideration.

To examine the quasineutrality of the plasma, we introduce the electric
potential ¢(x) of the plasma, where the x-axis is directed perpendicular to
the electrodes, and the origin of the x-coordinate is taken to be centered
between the electrodes. Symmetry gives the property ¢(x) = ¢(~x), and the
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charged-particle currents to both sides from the middle are the same. Hence
we will evaluate only the current in the positive direction. Because the
electrons are in thermodynamic equilibrium, their number density inside the
positive column is

Ne = NO exp(e‘p/Te)‘

Ions that are generated at a point £, reach a point x with a velocity o,
= y2e[o( &) — @(x)] /M. Introducing g(£)—the number of ions pro-
duced per unit volume at the point &—we obtain

'=fx g(€£)d¢
"o y2e[o(€) - o(0)]/M

for the ion number density at a point x. lons collected at a point x are
formed at points 0 < £ < x, because x = 0 corresponds to the top of the
potential hump of the self-consistent plasma field for ions. Thus, the condi-
tion N, = N, for quasineutrality of the plasma gives

(20.38)

e<p(X)) zf-‘ g(f)df
0 y2e[o(x) —@(&)]/M’

where N, is the electron number density at x = 0, and we define the
self-consistent-field potential ¢ so that ¢(0) = 0.

We introduce the reduced variables n(x) = —e@(x)/T, and j, =
Nyy/2T,/M . In terms of these variables, Eq. (20.38) takes the form

x g(€)d¢
joen = [ 28

20.39
0 Vn(x) = () ( )

for > 0. From this equation, we can evaluate the flux of charged particles
from the plasma. Towards this end, we multiply the equation by (dn/dx)
[p(y) = n(x)]"'/? and integrate the result over x between & and y. Because
of the relation

xdn(x) 1
Y
N O G COEE)

) dn

~Jwo VIn(y) = nlln = 9(€)] B

T,
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the right-hand side of the equation is

fn(y) d’?(x) fn(x) g(f)dn(f) df
o Yn(y) - n(x) Vn(x) = n(€) dn(€)

_ [ d " el
fo g(£) n(ff)dn(g)f(f) VIn(y) — n(H)][n(x) = n(€)]

=wf0yg(§>d§.

Finally, we obtain

(20.40)

i) = [ (§>d§—— " exp( 1) e
LY g ) pP{—7 m

for the ion flux j(y) to the electrode at a given point y.

The flux j(y) of charged particles towards the electrodes increases steadily
with increasing distance from the midpoint x = 0. As a function of the
potential of a self-consistent field, it reaches a maximum at the electrode
where the quasineutral property of the plasma is lost. Therefore, the condi-
tion dj /dn = 0 at the electrode corresponds to the condition dn/dx = =,
because dj/dn = (dj /dx)/(dn/dx). Denote n = n, at the electrode and find
this value. Represent j(n) in the form

Jo

f(n)~; "exp(~ n)‘/——
20
=L —f exp(—7n')yn — 7' dry,

so that the condition dj/dn = 0 at the electrode leads to the equation

o d‘l’]
/ R L
"70];) exp(~1) m

The solution of this equation is m, = 0.855. It gives the flux of charged
particles towards the electrode as

' Jo 0.344] 0344N‘/ 21, 20.41
]“ﬂ_‘/n—o“-fo“- OM- ()
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From this one can find the depth of the potential well of the self-
consistent field for electrons in the positive column. Taking the Maxwell
velocity distribution function for the electrons, we obtain

e

27T, e"p(~ 2T

f(v.r) = NO

The electron flux toward the electrode is

= [ d 0344N\/2Te
]—"/;vaf(vx) v, =u. 0 M )

where m,0i/2 = e Ag, so that e A¢ is the depth of the potential well. From
this we obtain

A Te]2.7M 20.42
ecp-znm. (20.42)

e

The above relations follow from the balance of charged particles that are
formed in the region of the discharge and subsequently leave this region.
This balance equation written in an alternative form allows us to determine
the electron temperature. This form is

X0 _ ZTE
NOkion(Te)Na'/(.) e dx = 034'4'1\/0 7 y (2043)

where k,,, is the rate constant for atomic ionization by electron impact, and
N, is the number density of atoms. This relation shows that the electron
temperature does not depend on the number density of electrons in the trap.
Rather, it is determined by the identity of the gas and by the parameter N, L.

We wish to find the domain of validity of the above results. The condition
for plasma quasineutrality, as it follows from the Poisson equation, has the
form

d*n 1
— < —.
dx? r

1 Ne"}z;;w <Moo

Because the value of n varies by about unity in the region of the positive
column, Eq. (20.37) shows that the above condition corresponds to rp < L.
The second condition in Eq. (20.37), L < A, amounts to the assumption that
once an ion has been formed it moves in the discharge region without
collisions. The requirement of thermodynamic equilibrium among atoms
corresponds to the condition (9.47), and is usually well fulfilled because of
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the small number density of atoms in the discharge plasma. The additional
requirement of thermodynamic equilibrium among electrons requires that
each electron must collide with other electrons many times before leaving the
discharge region. That is, the total distance an electron travels in this plasma
is far greater than the mean free path A, for collisions with other electrons.

This leads to the estimate
/M
A, <y — L,
mE

to be added to the conditions in Eq. (20.37).

Thus the positive column of a low-pressure arc discharge contains a
special type of low-density plasma that includes both charged particles
(electrons and ions) and neutral atoms. A self-consistent field of this positive
column plasma is such that it creates a potential well that nearly traps
electrons, while simultaneously being nearly transparent for positive ions. As
a result, collisions between trapped electrons establish thermodynamic equi-
librium for electrons in the positive column, and ionization collisions of
electrons with atoms determine the electron temperature of this plasma.

20.7 IGNITION CONDITIONS FOR LOW-CURRENT DISCHARGES

We shall now investigate the formation and loss of electrons near the
cathode of a glow discharge, when electrons are generated at the cathode as
a result of positive-ion impact. This occurs in low-current discharges when
heating of the cathode by the discharge current is small. Secondary electrons
formed on the cathode by ion impact obtain enough energy from the electric
field in the cathode region to ionize atoms of a gas. This leads to reproduc-
tion of the ions lost in the impact process, and hence the maintenance of the
plasma in the cathode region. The balance equation for the electron number
density in the cathode region is

, 20.44
o =V (20.44)

where a(E) = N vo,,,»/w, is called the first Townsend coefficient, N, is the
number density of atoms, o, is the cross section for ionization of the atom
by electron impact, and w, is the electron drift velocity. The solution of this
equation is N, = N; exp( fa dx), where N; is the electron number density
near the cathode, the integral is taken over the cathode region, and the
x-axis is perpendicular to the cathode.

The second Townsend coefficient vy is now introduced as the probability for

generation of an electron as a result of ion impact with the cathode. The
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TABLE 20.1. The Second Townsend Coefficient for a Tungsten Cathode

Y
Ion E,=1eV E;=10eV
He?” 0.30 0.27
Ne™* 0.21 0.25
Ar* 0.095 0.11
Kr* 0.048 0.06
Xe* 0.019 0.019

value of vy is specific to the identity of the gas and its ion, but also depends
weakly on the ion energy. As a demonstration of this, Table 20.1 contains
values of the second Townsend coefficient for a tungsten cathode and
inert-gas ions at two collision energies.

The condition to have a self-maintained gas discharge in the gap between
two plates, where the electric field and hence the first Townsend coefficient
a are spatially uniform, can be found readily. If the distance between plates
is L, then e** — 1 electrons are formed in the gap from one primary
electron. Because each ion colliding with the cathode releases an average
of y electrons, the condition to have a self-maintained gas discharge is
y(e*t — 1) = 1, or equivalently,

al =In(1 + 1/y). (20.45)

The functional dependence of the first Townsend coefficient on the
electric field strength E and the number density N, of gas atoms has the
form a = N,F(eE/N,), where the function F(x) depends on the identity of
the gas. Because the atomic ionization potential exceeds the mean electron
energy, the ionization rate constant is determined by the tail of the electron
distribution function. Hence one can assume that the ionization rate constant
is proportional to the electron distribution function at an electron energy
close to the atomic ionization potential. Then, according to Egs. (9.58) and
(9.59), the principal dependence on the electric field strength is F(x) ~
exp(—C/x), where the constant C depends on the type of gas. Thus the first.
Townsend coefficient can be approximated by the formula

a = AN, exp(~ BN, /E). (20.46)

Table 20.2 gives values of the parameters entering into this formula in a
region of reduced electric field strengths.

Using the approximation (20.46) for the first Townsend coefficient and
assuming the electric field strength in the gap to be constant, Eq. (20.45) for
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TABLE 20.2. Parameters for Ionization in the Cathode Region®

A B Region of E/N, (N,L) in U, E,/N,
Gas 107 cm’ Td Td 107%em?> vV Td
He 0.85 96 60—-420 54 49 140
Ne 1.1 280 280-1100 5.0 130 350
Ar 4.0 510 280-1700 1.8 86 720
Kr 4.8 680 280-2800 2.0 130 980
Xe 7.3 990 280-2300 1.7 160 1400
1 townsend = 1 Td = 1077 V em?,
maintenance of the electric current in the gap gives the expression
U, S 1 2047
© In[A/In(1 +1/y)] + In(N,L) (2047)
for the gap voltage U, = EL. This function has a minimum at
e 1
(NaL)min = — In{1 + Mk (20.48)
which gives
eB 1
Upin = B(N,L),n = 7ln 1+ —]. (20.49)
Y

This result affects the electric-field-strength distribution in the cathode
region. If the distance between electrodes of a gas discharge is much larger
than the size L that corresponds to the minimum of U,, then the cathode
region, where electrons are generated, is separated from the other regions.
When this is true, the maximum electric field strength occurs solely in the
cathode region. Figure 20.1 shows a schematic distribution of the electric
field strength along a cylindrical discharge tube. The region where electrons
are formed—the cathode region—is separated from the positive column
where the formed plasma is maintained. The cathode region is responsible
for formation of electrons. Any variation of the tube length leads to a
variation only of the length of the positive column, and the size of the
cathode region is unaltered.

20.8 BREAKDOWN OF GASES
An electric potential that can support an electric current in a gas-filled gap
and has an analytical form of the type

U. = f(N,L), (20.50)

exemplified by Eq. (20.47), is called a Paschen’s-law potential. The function
in Eq. (20.50) can possess a minimum, and Fig. 20.2 gives an example of this
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Figure 20.2 The air breakdown electric field in a gap between two parallel elec-
trodes a distance L apart versus NL for air (Paschen’s curve), where N is the number
density of molecules.

behavior for air. When an electric current is established, the distribution of
charged particles in a gap becomes nonuniform. This happens if the number
density of electrons and ions is not so small that the Debye-Hiickel radius of
the plasma is significantly less than the gap size L. Then the cathode layer is
separated from other regions of the discharge in the gap, and its size is
determined by Eq. (20.48). The remainder of the gap contains the positive
column and anode region of the discharge. The electric field in these regions
is lower than in the cathode region.

If the electric field is less than that given by Eq. (20.47), then an electric
current will not occur in the gap. The potential (20.47) is called the break-
down potential. If electron capture to form negative ions takes place, this will
change the equation for the breakdown potential. For example, in the case of
air, attachment of electrons to the dissociated oxygen molecule (e + O, —
O™+ O) occurs, and Eq. (20.45) then takes the form

(a—n)L =In(1+1/7). (20.51)

Here, n is the rate constant for electron attachment, defined as the average
number of electron attachments per unit length of the electron trajectory. In
the limit of large values of the product NL (where N is the number density
of molecules) this relation takes the form

a(E/N) = n(E/N), (20.52)
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which connects the breakdown electric field strength and the number density.
For air, this connection is E/N = 90 Td, corresponding to an electric field of
25 kV /cm at atmospheric pressure.

Gas breakdown starts from an incidental electron that creates new charged
particles when accelerated by the electric field. If breakdown occurs in a
uniform electric field, a propagating ionization wave in the first stage of
breakdown does not disrupt the uniformity of the electric field. A different
form of gas breakdown takes place in the case of a needle-shaped electrode
that creates a nonuniform electric field. Then the ionization wave propagates
in the form of a streamer (see Fig. 20.3). The charge distribution in the
streamer strengthens the electric field near its head. Ionization processes are
accompanied by excitations of atoms or molecules. Photons generated by
radiation from excited particles are absorbed in neighboring regions, and that
absorption of photons can lead to ionization and the creation of free
electrons. The intensity of this ionization process is weak, but the appearance
of free electrons in the region of a heightened electric field leads to their
rapid reproduction. In this way, the head of the streamer propagates to a new
position following the direction of the electric field. The generation of
electron avalanches before the streamer due to photoprocesses and a height-
ened electric field increases the velocity of this ionization wave, which is of
the order of 10%-10° cm/s. The breakdown electric field strength for the
streamer mechanism is less than that for a uniform electric field. For
example, it is about 5 kV /cm for air at atmospheric pressure, which is about
a factor of 5 less than for a uniform electric field. Therefore, if the possibility
for streamer formation exists, breakdown proceeds by this mechanism. In
particular, lightning in the Earth’s atmosphere starts in regions with nonuni-
form field.

20.9 CATHODE REGION OF A GLOW DISCHARGE

To analyze the spatial distribution of ions and electrons in the cathode
region, we start with the Poisson equation

E
e 4me(N, — N,)

Figure 20.3 A region of space occupied by the plasma in the streamer mechanism
for propagation of the ionization wave: 1, the streamer head, where the arrow shows
the direction of a streamer motion.
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for the electric field strength, where N, and N, are the number densities of
ions and electrons. Assuming the mean free path of ions and electrons to be
small compared to the size L of the cathode region, we use the expressions
i;=eK,N,E and i, = —eK,N,E for the current densities of ions and elec-
trons, where K; and K, are respective mobilities of the ions and electrons,
and for simplicity we assume that the electric field strength is small. Because
in the cathode region i; ~i, and K, > K,, then we have N, < N, in
this region. The Poisson equation then becomes dE/dx = 4meN, =
—47i,/(K,E). The sign for the electric field is chosen such that the electric
field hinders the approach of ions to the cathode.

The total electric current density { =i, + i, is conserved in the cathode
region, because charge does not accumulate there. The boundary condition
at the cathode has the form i,(0) = yi,(0), or {,(0) = i/(1 + y), where vy is
the second Townsend coefficient. Since ions are formed outside the cathode
region, this relation i, = i /(1 + y) is valid in the entire cathode region. Then
the solution of Poisson’s equation is

8wi

E*=E’~ —————1x,
‘T KEQ+y)

(20.53)

where x is the distance from the cathode, and E, = E(0). Taking the electric
field strength to be zero on the boundary of the cathode region (L is small
compared to the tube radius), we obtain

i=EXK(1+y)/(87L). (20.54)

To study the consequences of this result, we observe that the cathode
region size L and voltage U, are both determined by the condition that the
cathode voltage should be a minimum. Hence, Eq. (20.54) shows that the
current density is constant, so that it does not depend on the total discharge
current /. This means that an alteration of the discharge current leads to a
change of the cathode area occupied by the current. This area is //i, and as
long as it is smaller than the cathode area wri (r, is the cathode radius),
such a regime can be realized. This regime is known as the normal glow
discharge. When the discharge electric current exceeds the value imré, the
glow discharge becomes abnormal. Then the cathode region voltage exceeds
that given by Eq. (20.50), and increases with an increase of the discharge
current. (See Fig. 20.4.)

We can determine the value of the cathode voltage on the basis of Eq.
(20.53) for the electric field strength E = E_y/1 — x/L in the cathode region.
The condition fa dx = In(1 + 1/y) replaces Eq. (20.45). Using Eq. (20.46)
for the first Townsend coefficient, the preceding condition gives

: (20.55)

1
1+ —
Y

1 b
Ayfo CXP(‘Z—VT) dz = In
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Figure 20.4 The cathode electric voltage as a function of current for argon at the
pressure p = 1 Torr, where the second Townsend coefficient is y = 0.1, and the tube
radius is 1 cm.

where y =N,L, z=4y1—-x/L, and b = BN,/E.. Because the cathode
voltage is U, = 2E_L /3, we obtain b = 2BN, L /(3U,). The condition that
the cathode voltage is a minimum is dU,/dy = 0, which gives db/dy = b /y.
Then from the expression (20.46) for the first Townsend coefficient, the
condition for the cathode voltage to be a minimum is

J(b) + bdi(b)/db = 0,

where J(b) = [yexp(—b/z'/?)dz. The solution of the above equation yields
= (.71, and we then obtain

1
1+ —

(N, L) »

; (20.56a)

min

=—1n
A

U, =094B(N,L) . (20.56b)

min

B
=2.87—1In
A

1
1+ —
"

It can be seen that these relations are similar to Egs. (20.48) and (20.49),
which follow from the assumption of a constant electric field strength in the
cathode region. Table 20.2 exhibits cathode-region parameters calculated on
the basis of Eqs. (20.56). Table 20.3 lists values for the cathode voltage drop
for a few gases and cathode materials used in glow discharges.

As the discharge current increases, the cathode voltage drop also in-
creases, until heating of the cathode becomes sufficient for thermoemission
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TABLE 20.3. The Normal Cathode Drop U, of Glow Discharges
for Some Gases and Cathode Materials?

U, (V) for Cathode Material

Gas Al Ag Cu Fe Pt Zn
He 140 162 177 150 165 143
Ar 100 130 130 165 131 119
H, 170 216 214 250 276 184
N, 180 233 208 215 216 216
Air 229 280 370 269 277 277

#Cobine (1958).

b Ue Transition
Abnormal region
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discharge
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Figure 20.5 A typical form of the dependence of the cathode voltage drop on the
discharge electric current /.

of electrons (see Fig. 20.5). Then the cathode voltage drop falls, and the
transition from a glow discharge to an arc takes place. The voltage drop of
the cathode in an arc is about 20 to 30 V, which is far less than that in glow
discharges. The energy that electrons obtain from the field in the cathode
layer is sufficient for atomic ionization. The current in the arc cathode layer
may be either uniform or in the form of cathode spots.

There is another aspect of this problem. After initiation of a gas discharge,
the voltage between the electrodes falls because of plasma formation near
the cathode. If there are mechanisms in the system that can quench this
plasma, vibrations of the gas discharge may occur. The mechanism for this is
that generation of a plasma as a result of ionization of gas atoms causes
a drop of the discharge voltage, while the decay of this plasma leads to an
increase of the voltage. Such behavior in corona discharges is known as
Trichel pulses. The leading edge of such a pulse is steep and is determined
by times characterizing electron motion, while the trailing edge of the pulse is
long, and its time is reflective of times for ion motion. Most commonly, a
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time typifying the leading edge of a Trichel pulse is of the order of 1-10 ns at
atmospheric pressure, and the total pulse time is greater than this value by
several orders of magnitude, depending on the corona geometry and the
identity of the gas. Although such vibrations can be observed in a glow
discharge, the low stability of a corona discharge causes this vibrational
behavior to be encountered frequently.

20.10 CONTRACTION OF THE POSITIVE COLUMN
OF A GLOW DISCHARGE

Contraction of a gas discharge means that the electric current occupies only
part of the available volume of a discharge tube near its axis. In Chapter 18
and in preceding sections of this chapter, we considered contractions of arc
discharges that occur as a result of a strong temperature dependence of the
rate of heat release and a weak temperature dependence of heat transport.
Now we shall concentrate on mechanisms that lead to contraction of glow
discharges.

First we consider the contraction of a glow discharge carrying a small
electric current. When analyzing the plasma of a positive column in this case,
we assumed the rate constant of atomic ionization in Eq. (20.2) to be
constant over the cross section of the discharge tube. This is not actually true
in practice. Since the gas is heated by the electric current, the gas tempera-
ture near the axis is higher than that near the walls. Equation (20.14) allows
one to determine this temperature difference if heat transfer is due to
thermal conductivity. Since the gas pressure is constant over the discharge
volume, the number density of atoms near the axis is lower than that near the
walls. Equation (20.17) predicts a strong dependence of the ionization rate on
the atomic number density. Even slight heating of a gas can lead to a
situation where ionization takes place near the axis of the discharge tube.

However, this does not lead to contraction of the discharge. Equation
(20.2) gives the distribution of the electron number density when electrons
occupy the entire cross section of the discharge tube with some functional
form k,,,( p). Each electron formed at the axis moves to the walls, where it
is lost. Therefore, electrons will occupy the entire cross section of the tube.

For contraction of the discharge to occur, production of electrons at the
center of the discharge tube must be accompanied by spatial loss of elec-
trons. An example of this behavior occurs when molecular ions are formed in
a plasma and pair (dissociative) recombination of electrons and molecular
ions occurs. Because of the quasineutrality of the plasma, the balance
equation (20.2) takes the form

+ kion( p)Ne]Va — aN; = 0,

[4

D, d( dN,
——|p
pdp\ dp
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where « is the recombination coefficient of electrons and ions. This equation
allows us to estimate the size of the region p, that is occupied by the electric
current. Assume that a typical size of the region where the ionization takes
place is small compared to p,, and that, in turn, p, is small compared to the
tube radius r,. Then the radius p, follows from the relation that the
recombination time ... ~ 1/(aN,) is of the order of the time for electron
transport through a region of size p,, given by 7 ~ p?/D, (where N, is a
typical electron number density in this region or the number density in the
center). This leads to the estimate

po~ YD/(aNy) <y (20.57)

for the size of a region occupied by the electric current. In a discharge
contraction at small currents, a variety of mechanisms exhibiting this phe-
nomenon are possible, especially if the formation of negative ions from
electrons is possible in the discharge plasma. Ionization in this case takes
place in a narrow region near the tube center, and the loss of electrons
occurs inside the plasma.

20.11 PLASMA HARDENING

During the formation of a gas-discharge plasma, the transient processes that
occur before equilibrium is attained can have practical applications. One
such application is a plasma-chemistry phenomenon—hardening—that makes
use of nonequilibrium products resulting from plasma cooling. An example of
this process is the formation of ozone from rapid cooling of dissociated
oxygen. Ozone is a metastable oxygen compound, so that the formation of
ozone from oxygen atoms leads to the release of energy. But this process
does not occur as a result of collision of two ozone molecules. Therefore, at
the final stage of cooling of dissociated oxygen, when oxygen atoms are
transformed into molecules of oxygen and ozone, the mixture thus formed is
stable.

Ozone can be produced from partially dissociated oxygen or air by the
reactions

0 + 20, & 0, + Oy, (20.58a)
O+ 0,+ N, & O;+N,, (20.58b)
O + 0; « 20,. (20.58c)

We assume the degree of oxygen dissociation in the initial state to be small.
This allows us to neglect those recombination processes that require the
participation of two oxygen atoms. The cooling rate dT/dt is an important
parameter in these reactions.
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The hardening phenomenon is associated with a unequilibrium due to
rapid cooling. At high temperatures the equilibrium among O, O,, and O, is
supported by the processes shown in (20.58), but starting from a typical
temperature T, the equilibrium between atomic and molecular oxygen is
violated. We introduce the equilibrium constants

-[_O_E=K(T) =C,(T)ex (—&) (20.59a)
YR |
Ei%i[—?fl =K,(T) = C(T) exp(—%), (20.59b)

where [X] means the number density of particle X; K,(T) and K,(T) are
equilibrium constants, so that C(T) and C,(T) are weak functions of T;
D, = 5.12 eV is the dissociation energy of oxygen molecules O,; and D, =
1.05 eV is the dissociation energy of ozone molecules O,. Taking into
account the detailed balance principle relating rate constants of the pro-
cesses, the balance equation for ozone molecules is

d[O;]
dt

- —k[0,][0] + K,[0, J[0], (20.60)

where K, and k are the rate constants for the processes (20.58a) and
(20.58¢), respectively. We assume that equilibrium between atomic oxygen
and ozone is possible at temperatures of the order of T,,. Then this equation
is

d[0,] | KOTK: (0,1[0.]
a  [0] S

At temperatures below T, one can neglect the second term on the right-hand
side of this equation. Then the ozone number density [O,] at the end of the
process is given by the relation

L KK T
[0;] N,  [0,] D,dTjdt’

where N, is the number density of ozone molecules at the temperature T,
and we assume a weak temperature dependence for k(7). In these estimates
we use the magnitude of the cooling rate d7/dt.
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From this we find a typical ozone number density at the end of the process
to be

[0].,[0, ], [0,]D, 4T
K(Ty)  k(T)K(T)T; dr’

[Os] ~ (20.61)

where [X],, means the equilibrium number density at this temperature.
However, typical temperatures T, are such that equilibrium does not occur.
Then the left-hand side of Eq. (20.60) is of the order of the second term of
the right-hand side. This gives the equation

D, dT

k[O]eq ~ Ta (20.62)

for T,, where [O],, ~ yK,[O,] is the equilibrium number density of atomic
oxygen. Because of Eq. (20.61) for the transition temperature T, this
temperature is connected with the rate of cooling d7/dt by the relation

ar . D,
PR Y

where C depends weakly on the temperature, and the final ozone number

density depends on the cooling rate as

dT 1-2D./D, dT 0.6
) = ( ) . (20.63)

1~ (5 i

Some useful estimates can be made from the above formulas. From Eq.
(20.62) it follows that T, lies in the interval 1700-2000 K for a cooling rate
10*-10° K /s. The number density at the end of the process is thus [0;] ~ 10"
cm ™3, The first conclusion that can be reached is that the final amount of
product is determined by the quantity at temperatures where there is
thermodynamic unequilibrium between plasma components. Second, the
mechanism considered gives a small contribution compared to ozone forma-
tion from electrical phenomena in the Earth’s atmosphere. The analog in the
atmosphere to the process we are considering is expansion of a lightning
channel after passage of an electric current through it. Such a process has
low efficiency compared to oxygen dissociation resulting from weak electric
currents in the atmosphere. In the latter case, the efficiency of oxygen
dissociation is relatively high, and each released oxygen atom combines with
an oxygen molecule to create an ozone molecule.



CHAPTER 21

PLASMA INTERACTIONS
WITH SURFACES

21.1 CATHODE SPUTTERING AND ITS USES

A positive column containing a uniform ionized gas, such as is found in glow
and arc discharges (including gas lasers), can be used as a light source. The
excited atoms or molecules in the positive column produce radiation that
determines the properties of the light emitted. In other cases the radiation
can arise from collisions of plasma particles. For example, photons emitted
by arc light sources come from photorecombination collisions between elec-
trons and positive ions. In all these cases, plasma uniformity is of importance
to provide optimal conditions for the production of light in as much as
possible of the plasma volume. That is, it is advantageous to generate a
positive column in a discharge where the plasma is almost uniform, and
where the positive column occupies a large proportion of the total discharge
volume. Another class of plasma applications uses the fact that collisions of
plasma particles with a surface can release surface atoms. This effect is used
for etching, cleaning, and depth profiling of surfaces. Also, bombardment of
a surface by plasma ions leads to evaporation of surface atoms and ions,
which can be used for fabrication of thin films.

We consider first the sputtering process caused by ion bombardment of
the discharge cathode. As was seen in Chapter 20, the cathode layer of a
glow discharge serves as a source of electrons. Formation of the cathode
layer gives the plasma in this region an electric potential that differs from
that of the cathode itself, and the plasma ions accelerated by this difference
generate the secondary electrons. Ionization of plasma atoms by these
electrons leads to reproduction of charged plasma particles in the cathode

350
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TABLE 21.1. Sputtering Yields £ (the Probability per Ion
Collision for Release of a Surface Atom) for Bombardment
of Elemental Solid Surfaces by 100 eV Argon Ions

Surface £ Surface 3
Ag 0.63 Os 0.057
Al 0.11 Pd 0.42
Au 0.32 Pt 0.20
Be 0.074 Re 0.10
Co 0.15 Rh 0.19
Cr 0.30 Ru 0.14
Cu 0.48 Si 0.07
Fe 0.20 Ta 0.10
Ge 0.22 Th 0.097
Hf 0.16 Ti 0.081

Ir 0.12 U 0.14
Mo 0.13 \Y 0.11
Nb 0.068 w 0.068
Ni 0.28 Zr 0.12

layer. Sputtering occurs conjointly with the formation of secondary electrons,
releasing cathode atoms as both neutral atoms and ions. We now examine
this process.

The probability for the release of a surface atom upon the collision of a
plasma ion with the cathode surface depends on such parameters as the type
of ion, the surface material, and the ion energy. Table 21.1 lists the probabili-
ties for release of a surface atom as a result of bombardment of various
elemental surface materials by an argon ion of energy 100 eV. Because this
probability is less than unity, sputtering of a single atom may require several
ion collisions.

It is clear that the probability for sputtering of atoms increases with an
increase of the ion energy. Therefore, for effective sputtering it is necessary
to use a type of discharge that is suited to the production of energetic ions to
collide with the cathode surface. This can occur in radio-frequency (rf)
discharges, in discharges with a hollow cathode, and in magnetron discharges.
The geometry and the types of fields in these discharges lead to relatively
large energies of ions in the cathode layer, and consequently to effective
sputtering from the cathode.

We consider briefly an rf discharge in the context of the sputtering
problem. Its cathode layer differs from that of a stationary glow discharge in
that the cathode layer of an rf discharge must both create and reproduce the
discharge electrons. Therefore, the voltage drop across the cathode layer in
an rf discharge is greater than that in a stationary glow discharge. The energy
of ions that bombard the cathode in an rf discharge is about 100 eV. To avoid
scattering of ions on gas atoms, the gas pressure used for sputtering is small,
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usually in the range from 1 to 40 mTorr. There is an optimal frequency for
the discharge that corresponds to the maximal ion energy for a given
discharge geometry, cathode material, and other parameters of the discharge.
The frequency 13.56 MHz is commonly used for rf discharges because it is
considered to be a “free frequency” that is not assigned for radio communi-
cations. This frequency exceeds that which would be optimal for sputtering.

Sputtering is the first step in the deposition of films. Released atoms and
ions form a flow that is directed to a substrate where atoms of the flow attach
and form a film. One way to use an atomic flow for this purpose is
represented by the so-called ion-cluster beam (ICB) method. In this method,
a flow of atoms is transformed into a beam of charged clusters by mixing the
atomic flow with a stream of cold buffer gas that has passed through a nozzle.
Cooling of the atoms as a result of jet expansion leads to their nucleation and
consequent formation of clusters. These clusters are electrically charged if
the atomic flow from a discharge plasma contains an admixture of ions that
can function as condensation nuclei during the formation of clusters, or if
additional ionization of beam particles is caused by an intersecting electron
beam. At the end of the condensation process, all the evaporated atoms are
in the form of clusters.

Films formed from ICB methods are of higher quality than those from an
atomic flow. The reason is that transformation of an atomic flow to a film is
accompanied by an intense heat release owing to the formation of bonds,
with each atom of the atomic beam transforming its binding energy into heat.
From Eq. (12.1), the released energy per atom is g, for the atomic beam and
A/n'”® for each cluster in a beam. Since g, ~ A4, the ratio of specific
released energies for the atomic and cluster beams is of the order of n~!/3
(where n is the number of atoms in a cluster). In a realistic example, when
clusters contain an average of n ~ 1000 atoms, this ratio is ~ 0.1. Because
the atomic binding energy in the film being formed is much greater than a
typical thermal energy of the atoms, film growth from individual atoms can
be so nonuniform as to lead to vacancies in the film as it forms. This causes
capture of buffer atoms within a film that, along with other side effects,
decrease the film quality. When films are formed from beams of clusters,
these deleterious effects are much less probable.

The ICB method has other advantages over atomic beams for practical
applications. Since clusters have a large mass, the divergence of cluster
beams is relatively small, and they can be focused onto small surface areas.
Because the beam contains charged clusters, it is convenient to control
it by an external electric field. This allows one to select optimal conditions
for the application. The ICB method also opens up the possibility of new
applications. For example, by accelerating the cluster beam to high velocities
with an electric field and directing the beam to a foil, the foil can be
perforated with holes of small sizes. This method, suggested by Haberland
and collaborators in 1992, makes possible the generation of sieves with a
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predetermined orifice diameter. However, because the intensity of cluster
fluxes is low, their applications are restricted to small-scale technologies such
as microelectronics.

21.2 LASER VAPORIZATION

In addition to the formation of free atoms upon ion bombardment of the
cathode, vaporization of atoms in powerful gas discharges can occur when
the cathode temperature is high. Cathode vaporization increases with the
power of the discharge. Hence this mechanism for generation of atoms can
be of critical importance for arc discharges. Cathode phenomena in arc
discharges depend upon a diversity of processes, so that the details of these
phenomena can be of importance. We shall analyze first the thermal mecha-
nism of surface vaporization in a simple case when the surface is irradiated
by a laser beam. When absorbed by the surface, laser radiation heats the
material constituting the surface, and makes it possible to reach high local
temperatures. In this way, a dense beam of evaporated atoms with an
admixture of electrons and ions can be formed.

It is usual to employ pulsed lasers for laser vaporization, and the process
occurs subject to the condition

t<<ri/y. (21.1)

Here ¢ is the pulse time, r is the radius of the irradiated spot, and y is the
coefficient of thermal diffusivity of the surface material: xy = x/(c, p), where
« is the thermal conductivity coefficient, ¢, is the specific heat capacity, and
p is the density of the surface material. If condition (21.1) is fulfilled, all of
the energy absorbed from the laser radiation is expended on the vaporization
of atoms. Then, assuming the laser beam to be uniform and cylindrical with
radius r, the energy balance equation is

P
— = (& + 2T)je(T), (21.2)

mr

where P is the power of absorbed radiation, g, is the binding energy of the
released atoms, T is the surface temperature expressed in energy units, and
Je(T) is the flux of evaporated atoms. We use the Maxwell velocity distribu-
tion for the atoms, and the mean kinetic energy 27 of the released atoms can
be taken to be small compared to the atomic binding energy g,. The flux of
evaporated atoms can be expressed in terms of the pressure p,,, of saturated
vapor at the given temperature [or the corresponding number density of
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atoms, N, (T) = p,,(T)/T], using the principle of detailed balance. Accord-

S

ing to Eq. (12.39), this flux is

T
Jeo(T) = fv Ey— N (T), (21.3)

where £ is the probability for attachment of the atom to the surface upon
contact, and m is the atomic mass. The value ¢ is of the order of unity. (For
example, ¢ =1 for tungsten at T = 3000-3500 K.) Because of the strong
temperature dependence of N, (T) (see data of Appendix 13 for some
metals), one can employ £ = 1 in the above equation.

Equations (21.2) and (21.3) determine the surface temperature and the
flux of evaporating atoms at a given power of absorbed laser radiation. The
greater the specific power of absorbed radiation, the higher is the tempera-
ture of the evaporating atoms, and hence the larger is the number density of
electrons and ions in the flux of evaporating atoms. The plasma thus formed
absorbs incident laser radiation; the mechanism for the absorption process
depends upon recombination collisions of electrons and ions in the flux.
There will be some power level at which all the laser radiation will be
absorbed by the plasma and none will reach the surface. The absorbed
radiation goes principally to electrons, with some atomic ionization also
occurring. This leads to an increase in the electron number density that
enhances the absorption of laser radiation by the plasma flux. The laser beam
does not reach the surface, being absorbed instead by the plasma, which thus
leads to laser breakdown. Laser breakdown corresponds to a regime of laser
action on the surface other than that we have been discussing, and takes
place when the specific powers of absorbed radiation are such that P > 10’
W /cm?, The mechanisms we have been examining for interaction of laser
radiation with the surface correspond to smaller laser intensities. In particu-
lar, Table 21.2 gives values of the temperatures and pressures p of evaporat-
ing atoms near metallic surfaces if the specific power of absorbed radiation is
P =3 x10° W/cm?,

TABLE 21.2. The Surface Temperature T and the Vapor Pressure p
Near a Surface Evaporated by Laser Irradiation®

Metal T,10° K p, atm
Au 5.0 160
Co 4.5 80
Cu 42 90
Fe 4.4 80
Ni 44 80
Pt 6.3 120
Ti 5.0 70
w 9.2 100

*The specific power of the absorbed radiation is 3 X 10® W /cm?,
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Figure 21.1 A schematic diagram of a laser source of metallic ion clusters: 1, laser
beam; 2, target in the form of a metallic rod; 3, buffer gas flow; 4, beam containing
buffer gas and clusters emerging from a nozzle; 5, skimmers; 6, intersecting electron
beam; 7, ion optics and accelerator; 8, final beam.

Thus laser vaporization can create intense fluxes of evaporating atoms
with an admixture of charged particles. Mixing such a flux with a flux of a
cool buffer gas (usually He or Ar), and expanding the mixture through a
nozzle, one can transform the vapor flux into a flux of clusters. This method
is used for generation of cluster beams for scientific research. Figure 21.1
shows a typical arrangement using this method.

We now want to analyze the evolution of the flux of evaporating atoms as
it departs from the surface. The atoms initially have a quasi-Maxwellian
velocity distribution. At a distance from the surface of the order of a mean
free path for the atoms, a directed stream of atoms is formed, and the
velocity distribution function changes to that for an atomic flux, with a
consequent slight decrease in temperature. Laser vaporization is usually
produced in a buffer gas, and the flux parameters depend on the properties
of the gas. In particular, if the buffer gas pressure is small compared to the
pressure of the evaporating atoms, the evolving flux propagates with the
sound velocity u = (yT;/m)'/? (see formula (15.7)), where T; is the atomic
temperature in the flux, m is the mass of an atom, and y = cp/cV (The
quantities ¢, and ¢, are the heat capacities of the vapor per atomic partlcle
at constant pressure and volume, respectively. For an atomic vapor, y = 3.)
As the flux moves farther from the surface, it expands so that the angle
between its boundary and the normal to the surface ranges from 5° up to 15°.
Expansion of the flux leads to a decrease of its temperature and pressure.
Mixing of the flux with a buffer gas causes an additional decrease of these
values. During mixing, the flux may become subject to disruption.

We turn our attention now to the evolution of charged particles—elec-
trons and ions—in an expanding flux. If atoms of the flux subsequently form
clusters, the charged particles are the nuclei of condensation, with the
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number density of charged particles being the determining factor in the
condensation process. First, thermodynamic equilibrium between electrons,
ions, and atoms of the flux is established, so the Saha equation (2.17) can be
used to find the number density of charged particles. This equilibrium is
sustained by stepwise electron impact ionization of atoms balanced by three-
body recombination of electrons and atomic ions as expressed in Eq. (5.15).
Because of the strong dependence of the equilibrium number density of
charged particles on the temperature, at some stage of the process the
recombination rate becomes small compared to the expansion rate. Beyond
this stage, the electron concentration becomes “frozen” because the decrease
of the electron number density due to the flux expansion is stronger than that
due to three-body recombination of electrons and atomic ions.

The transition to the “frozen” electron concentration takes place when
the rates of three-body recombination and expansion are equal. That equality
can be expressed by the condition

1 r

2 —
KN2 ~ — =

TCX

> 21.4
utana ( )

where K is the three-body recombination coefficient of electrons and ions
[Eq. (5.16)], ., is the expansion time, r is the radius of the flux, u is its
velocity, and « is its angle of divergence. Because the Saha formula (2.17)
gives a strong temperature dependence for the electron number density
[N, ~ exp(—=J/T)), where J is the atomic ionization potential, the criterion
(21.4) allows one to determine the transition temperature quite accurately.
For typical laser vaporization conditions, transition takes place at an electron
number density in the range N, ~ 10°-10" cm 3.

The determining factor in the evolution of the number density of charged
particles in an expanding flux is the small rate for three-body recombination
of electrons and ions. At low flux temperatures, when molecular ions are
formed, an effective channel for electron decrease is opened due to dissocia-
tive recombination of electrons and molecular ions as displayed in Eq. (5.27).
This can lead to elimination of charged particles from the flux. However, at
these temperatures, negative ions can be formed by attachment of electrons
to atoms, in addition to the formation of molecular ions and molecules. The
transfer of negative plasma charge from electrons to negative ions decreases
the recombination rate of charged particles and preserves a portion of the
charged particles for the following stage of the process when clustering
occurs. Competition of these processes influences the condensation process,
and therefore can determine the final state of the expanding flux. From this
one can conclude that processes in the expanding flux that occur with the
participation of charged particles can be different from other mechanisms
described above, and it is a combination of these processes that determines
the final state of the flux.
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21.3 ETCHING

Etching is a typical example of plasma processing. It is one stage in the
fabrication of microelectronics. The process consists of the replication of the
desired pattern on an element of an integrated microelectronic
scheme. The replicator is a sheet of glass or quartz patterned with a thin film
of a metal or metal oxide that absorbs UV radiation. This sheet, or wafer, is a
substrate on which several layers of different materials are deposited. The
upper layer, with a thickness of the order of 1 um, is a photoresist—an
organic substance that absorbs UV radiation and thus undergoes volatiliza-
tion at low temperatures. Other deposited materials are exemplified by Si,
Si0,, S;N,, and Al, which can play the role of a dielectric, semiconductor, or
metal in an integrated manufacturing scheme,

A sequence in the fabrication of patterns is illustrated in Fig. 21.2. The
first step of the replication (lithography) process is to establish the replicator
pattern on the sample. Then UV radiation is directed to the sample through
the replicator. The transmitted radiation evaporates a photoresist and trans-
fers the pattern to the sample in this way (Fig. 21.2b). The following stage is
the etching process, in which an underlying film is removed at points where a
photoresist has been removed. This may be accomplished with electron
beams, ion beams, or X-rays, or by chemical or plasma methods. The etching
process must be anisotropic in that material must be removed in a vertical
direction only. At the same time, the process must be selective, so that it acts

(b) |

Figure 21.2 Steps of the microfabrication pro-
cess: (a) the initial view of a sample (the upper
layer is a photoresist); (b) irradiation of a sample
and removal of a part of the photoresist according
to the patterns of a replicator; (c) the etching
process; (d) removal of the photoresist; (e) deposi-
tion of another material.
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only on the material to be removed. These requirements seem to be incom-
patible. For example, the ion-beam method is anisotropic because ions are
directed perpendicular to the surface. But it is not selective, because ions
destroy an etching layer and a photoresist to almost equal degrees. Discharge
methods that use chemically active particles (O, F, Cl) are selective, as are
chemical methods, but they are not anisotropic. Chemically active particles
may not act on a photoresist, but they do act on the total surface of a removal
layer, and the structure thus formed does not have vertical boundaries. The
best result for the etching process comes from a combination of plasma
methods that is both selective and anisotropic.

As a demonstration of this possibility, we consider the etching of Al film.
This film may be removed by reaction with chlorine atoms or chlorine
molecules that are formed in a gas discharge. The product of these reactions
is the gas AICIl,, which then departs from the system. Because Cl and Cl, do
not act on a photoresist, such a process is selective, but it is not anisotropic.
Addition of chlorocarbons CCl, or CHCI, to chlorine in the discharge gas
leads to the formation of a polymer that covers the sample with a thin film.
The film thus formed hampers the penetration of Cl and Cl, to the Al, and
slows the chemical process. But as a result of ion bombardment, the chloro-
carbon protective film is destroyed, and chemical reactions between Cl or Cl,
and Al proceed at such locations until a chlorocarbon film again forms there.
This provides an anisotropy of the etching process due to the vertical
direction of the ions. Thus, this process combines selectivity and anisotropy.
Using an rf discharge in low-density chlorine with an admixture of chlorocar-
bons, one can obtain simultaneously an ion beam that is formed on the
plasma boundary due to the plasma sheath, chemically active particles Cl and
Cl,, and a material for a polymer film,

Etching is one of the stages of the microfabrication process (Fig. 21.2). In
addition, the photoresist must be removed, and structures may be deposited
in the etched areas by other materials. Plasma processes may be useful here
also. In particular, a simple technique for removal of photoresist is based on
its reaction with oxygen atoms, which can be obtained from a gas-discharge
plasma.

The explication of the etching process shows the complexity of plasma
application methods. Because of the variety of possible plasma systems and
methods for any particular applied problem, the choice of an optimal method
is not simple.

21.4 EXPLOSIVE EMISSION

There are several mechanisms by which electrons can be emitted from the
cathode. In Chapter 20 we considered the Townsend mechanism of electron
emission, wherein collisions of ions with the cathode generate secondary
electrons. The Richardson—Dushman formula (2.33) describes electron emis-
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sion by a hot cathode. The distinction between glow and arc discharges
depends upon the manner of electron emission. Electron emission from the
cathode in a glow discharge is by the Townsend mechanism, whereas ther-
moemission takes place in arc discharges. Another mechanism is the field
emission that can occur in strong electric fields near surface nonuniformities.
In this case, the electric field can be sufficient to transport electrons across
the potential barrier at the surface. The existence of surface vaporization
leads us to consider one more electron emission mechanism, called the
Mesyats mechanism, or explosive emission.

A schematic representation of the Mesyats type of electron emission is
shown in Fig. 21.3. The first stage is field emission near a surface non-
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Figure 21.3 Evolution of the Mesyats mechanism or explosive emission. (a) In the
first stage of the process, emission of electrons takes place near nonuniformities
where an external electric field is intensified by one to two orders of magnitude. (b) In
the spark stage of the process, vaporization of the surface under action of the electric
current creates an intense atomic flux, which is ionized and transformed into a
plasma. (c) An instability destroys this explosive emission center, and a new center
arises at another point of the surface.
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uniformity. The cause of the field emission is that the emitting element of the
surface is heated and atoms evaporate from it. Evaporating atoms form a
medium through which an electric current passes. The atoms are ionized by
electron impact, and the ions return to the cathode while electrons are
removed from it. In the course of this process, the region occupied by the
current expands, and the radius of the plasma flux can be estimated to be

r~(x)",
where y is the coefficient of thermal diffusivity of the surface material at a
given temperature ( y ~ 1 cm?/s), and 7 is the duration of the phenomenon.
In time, an instability destroys this structure, but the process can be repeated
at other locations on the cathode.

Though the Mesyats mechanism of plasma emission was worked out for a
vacuum arc and for high-voltage breakdown in a vacuum, in its general form
it can also describe hot spots on the cathode. Hot spots formed on a cathode
enable the passage of high currents for a short time. These spots are called
explosive emission centers. Their evolution is complicated compared to the
above picture. In particular, the velocity of propagation of a plasma governed
by the ion velocity is of the order of 10° cm/s, while the velocity of
evaporating atoms is of the order of 10° cm/s. Nevertheless, one can
understand distinctive features of the phenomenon. One of these is the ratio
of the mass M of evaporated material to the total charge (Idt, where I is the
current. Evaporated atoms are ionized by electrons so that each evaporating
atom gives 2e of charge—one electron and one ion, if we assume the ion to
be singly ionized. Because formation of one charge pair corresponds to the
passage of one charge between electrodes, it follows that

M m
—_— =, (21.5)
f rae ¢

where m is the atomic mass. Since a spray of liquid material can occur
concurrently with atomic evaporation, the mass/charge ratio is greater than
stated in Eq. (21.5). For copper as an example, Eq. (21.5) gives 0.6 mg/C.
Atoms that evaporate from the cathode are ionized and thus ions return to
the cathode. In order to have a quasineutral plasma in all of space, it is
necessary to generate evaporated material on the anode also. Explosive
emission generates observable tracks on electrodes that appear to be dupli-
cated on the cathode. This is evidence of the similarity of the mechanisms for
electron emission for the arc cathode and for the electrode at vacuum
breakdown. In addition, it confirms that emission takes place in small
elements of the surface that become liquefied.
The mechanism described for expansion of the explosive-emission center
leads to the energy balance equation
l'2
C,AT ~ 37T (21.6)
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Here C, AT ~ 10° J/cm’ is a typical specific energy that corresponds to
heating of metals up to temperatures 7 ~ 10* K, and ¥ is the plasma
conductivity, which [according to the Spitzer formula (11.27)] is estimated to
be 3 ~ 100 Q' ecm™! at typical electron temperatures 7, ~ 1-3 eV. (This
temperature leads to a fully ionized plasma under equilibrium conditions.)
The above equation leads to the estimate

i’r ~ 108 A? s /em®. (21.7)

For a time 7 ~ 107% s typical for this phenomenon, the above expression
gives i ~ 108 A /cm?, which corresponds to the flux j ~ 3 X 10% (cm? s)~!
of evaporating atoms. The surface temperature can then be found from Eq.
(21.3). For example, the result of this procedure for copper is T = 8500 K. At
this surface temperature, the thermoemission current density according to
Eq. (2.33) is 10" A/cm?, an order of magnitude less than that due to the
Mesyats mechanism.

To better understand the processes that constitute the Mesyats mechanism
for emission, we can estimate other parameters of the phenomenon from the
above values. The total number of atoms participating in one event is of the
order jr’r ~ 10'°~10'". The number density of evaporating atoms near
the surface is about j/v ~ 10%! em™3, which corresponds to a vapor pressure
near the surface of p ~ 1000 atm. The number density for atoms that we
have just estimated is small compared to the condensed state. Therefore,
both the vapor and the plasma formed from it are gaseous systems. Next, the
electric field strength in the cathode layer is E ~ i/3 ~ 10® V/cm, and the
thickness of the cathode layer is | ~ AV/E ~ 1075 cm, where AV ~ 10 V
is the cathode voltage drop. The ion mean free path is A ~ (Nog,)™' ~
1077 cm, where o, ~ 107" cm? is the cross section of the resonant
charge-exchange process. Then the energy that is transferred from the
electric field to ions can transit further to atoms of the vapor, but not to the
surface. Other types of emission, such as thermoemission, are also of impor-
tance for this phenomenon. They create electrons near the surface, and the
subsequent ionization of vapor in the cathode layer is caused by these
electrons. Thus, the Mesyats mechanism of plasma emission generates an
intense emission of charged particles from the electrode surface. As a result
of evaporation of the electrode, a medium is created through which high
discharge currents can pass.

21.5 SECONDARY ELECTRON EMISSION

We have been discussing above the mechanisms for generation of electrons
from the cathode in a gas-discharge plasma. These include the generation of
electrons by ion impact (the Townsend mechanism, Chapter 20), by thermo-
emission (Chapter 2), by autoemission of electrons induced by a strong
electric field, and by explosive emission (the Mesyats mechanism). Explosive
emission includes a chain of interaction processes between a gas-discharge
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TABLE 21.3. Parameters for Secondary Electron Emission

Metal Emax> €V Smax e, eV £,,eV
Ag 800 L5 200 > 2000
Al 300 1.0 300 300
Au 800 1.4 150 > 2000
Ba 400 0.8 — —
Bi 550 1.2 — —
Co 600 1.2 200 —
Cu 600 1.3 200 1500
Fe 400 1.3 120 1400
Mo 375 1.25 150 1200
Nb 375 1.2 150 1050
Ni 550 1.3 150 > 1500
Pt 700 1.8 350 3000
Ta 600 1.3 250 > 2000
Ti 280 0.9 — —
W 650 1.4 250 > 1500
Zr 350 1.1 — —

plasma and a metallic surface. Generation of electrons from the anode is a
consequence of collisions of plasma electrons with the anode, and is called
secondary electron emission.

Secondary electron emission resembles ionization of atoms by electron
impact. In both cases bound electrons obtain energy from the incident
electron, and ionization takes place if the energy gained is sufficient for
electron release. Hence, the number of ionization electrons as a function of
the energy of the incident electron, 8(¢), has a dependence like that of the
cross section for atomic ionization by electron impact. The function 8(¢) has
a maximum 8, at some electron energy ¢,,,. This energy is greater than a
typical energy corresponding to the maximum cross section for atom ioniza-
tion by electron impact, because a slow electron formed inside the anode
cannot escape. The value of §,,, usually exceeds unity. Table 21.3 lists
values of the parameters 8., and g, for a variety of metals, and also
values of the electron energies ¢, and &, such that 8(¢e;) = 8(¢g,) = 1.

21.6 QUENCHING OF EXCITED PARTICLES ON WALLS

A weakly ionized gas will contain excited atoms or molecules in addition to
charged particles. These modes of excitation may include electronically
excited atoms and molecules, and vibrationally excited molecules and radi-
cals. The excited particles will influence properties and processes in the gas,
which usually is located in a space enclosed by walls (boundaries). Collisions
of excited particles with the walls lead to their quenching, the efficiency of
this process depending on the identity of the excited particles, the mode of
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excitation, and the properties of the walls. The quenching mechanisms are
identical to those that are encountered in collisions of atomic particles. In
particular, for a gas-discharge plasma enclosed in a cylindrical tube, we
assumed the probability of recombination of charged particles on the walls to
be unity. For walls made of a dielectric material, charged particles of one
sign are captured by the walls into a bound state on the wall surface. Then
charged particles of the opposite sign are attracted to the captured surface
particles and recombine with them. This process is akin to three-body
recombination of charged particles in gases.

The measure of quenching of excited particles on walls is the probability y
of quenching upon contact with the walls. This probability depends strongly
on the type of excitation. For highly excited states y is about one. For
example, collisions of metastable atoms He(2°S), He(2'S), and Ne(*P,) with
conducting surfaces like gold or iron exhibit a y in the range of 0.5-0.7. This
process is identical to quenching of these atoms by electron impact in
head-on collisions. Quenching of the above atoms by a dielectric surface is
identical to the Penning process and proceeds less effectively. In particular, y
lies in the interval 0.1~0.4 for quenching of metastable helium atoms on
dielectric walls.

One can take the parameter y to be of the order of magnitude, or in
excess, of the corresponding probability for quenching of a given excitation in
atomic and molecular collisions. In particular, the probability of quenching
the excited molecule O,('A,) in thermal collisions with atoms and molecules
in a gas is of the order of 10 °-~10~%, while the probability of quenching of
this molecule on dielectric surfaces lies in the interval 1077 to 4 X 1073,
depending on the wall material.

Quenching of excited particles on walls alters the spatial distribution of
these particles. We shall study this in the following context. We consider an
excited gas in a gap between two parallel infinite walls, with excited particles
generated at a location centered between the walls. Assuming the distance L
between walls to be large compared to the mean free path of the excited
particles, we can consider particle motion to be diffusive. The boundary
condition that follows from equating the diffusion and kinetic fluxes at the

walls is
DdN* 1/ d N, 218
dx =7 dmm ( - )

Here the x-axis is directed perpendicular to the walls, N, is the number
density of excited particles, D is the diffusion coefficient for excited particles
in the gas, T is the gas temperature, and m is the particle mass. Because
excited particles are neither generated nor lost in the bulk of the space, the
balance equation for the number density of excited particles in this region is

dN,
Jj= —DE— = const.
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The solution of this equation has the form N = A — Bx, where x is the
distance from the central plane. Using the boundary condition (21.8), the
number density of excited particles in the gas is

2x ( 2DV27m
(21.9)

N, = N|1 - =1+ —~—
* 0 L L‘y\/_f

The quenching efficiency y appears in this expression in the combination
a=vyLb/D ~ yL /A, where D is the average particle velocity, and A is the
mean free path of excited particles. From this it follows that quenching of
excited particles on the walls leads to a decrease of their number density at

TABLE 21.4. The Probability v of Quenching of Vibrationally Excited
Molecules in Thermal Collisions with Walls®

Molecule fiw, cm ™! Wall Material v
H, 4160 Quartz 5x107*
Mo glass 6 x107*
Steel 6 x10°*4
Cu 2 x1073
Ni 1.1 x 1073
D, 2942 Quartz 4 x10™*
N, 2331 Quartz 3x107*
Pyrex 5%x107*
Teflon 1 x1073
Al O, 14 x 103
Steel 1.7 x 1073
Mo glass 2x1073
Cu 2 x107*
C0,(010) 667 NaCl 0.2
Pt 0.4
CO,(001) 2349 Teflon 0.2
Brass 0.2
Pyrex 0.25
Mo glass 0.4
Quartz 0.4
N,0(010) 589 NaCl 0.4
Pt 0.4
N,O(001) 2224 Mo glass 0.03
Pyrex 0.2
Quartz 0.3
CO 2143 Pyrex 0.02
HF 3962 Mo glass 0.01
HCI 2986 Pyrex 0.5

*fiw is the excitation energy of the vibrationally excited state.
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distances from walls of the order of A/7y. Hence, if L > A/vy, quenching
can be taken into account by using the boundary condition N, = 0 at the
walls. In the other limiting case, L < A/vy, processes at the walls do not
influence the spatial distribution of excited particles. Evidently, information
about quenching at the walls is of importance only when L ~ A/y. Since
L > A, this corresponds to small values of y. Therefore, the quenching
probability is known for processes where y is small compared to unity. In
particular, this applies to quenching of vibrationally excited molecules on
walls. A list of quenching probabilities is given in Table 21.4 for a sampling of
excited molecules and of materials of a quenching surface. Values of y vary
over a wide range, and depend mostly on molecular excitation.



CHAPTER 22

CONCLUSIONS

We can now summarize the identifying physical features of a weakly ionized
gas or plasma. From the foregoing analysis and information, it can be
concluded that in most cases, when a plasma satisfies ideality conditions, it
resembles a gas in that the interaction between particles is small. However,
the presence of charged particles gives rise to some properties unique to a
low-density plasma. In the first place, self-consistent electric and electromag-
netic fields can be created inside a weakly ionized gas. These fields have
important effects on the spatial distribution of particles and processes in the
plasma. A weakly ionized gas interacts actively with external fields, which
affords a convenient method to govern its state. In the second place, because
of the long-range property of the interaction between charged particles, this
interaction exists independently of short-range interactions between neutral
particles, or between neutral and charged particles. For this reason, collective
properties of such plasmas have a universal character. Plasma waves and
instabilities resulting from interaction between charged particles can be the
determining factor in the behavior of various types of plasmas. In the third
place, gases in an ionized state will naturally coexist with excited atoms,
molecules, and radicals in a plasma. Thus, a plasma is a chemically active
system. It can be a source of characteristic radiation spectra or explicit
excited atomic particles.

As for dense plasmas (plasmas with strong coupling), they have some
features of condensed systems, and can be so complex as to require individ-
ual analysis of each case. As opposed to an ideal plasma, it is impossible to
separate interactions between charged and neutral particles in a dense
plasma. Therefore, properties of dense plasmas are not universal even
though they are due to charged particles. That is, the presence of charged
particles does not in itself provide information sufficient to explain the
principal properties of these systems.
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APPENDIX 1. PHYSICAL CONSTANTS

Velocity of light c =299792 X 10'® cm/s

Planck constant h = 662608 x 10 ergs
f = 1.05457 x 10~ ergs

Electron charge e =4.8032 x 107" esu

e? =23071 x 107" ergem

Electron mass m,=9.1094 X 10" 8 g

Proton mass m, = 1.6726 X 107% g

Atomic unit of mass 1.6605 x 107 g

Avogadro number 6.0221 x 10% mol~!
Stefan—Boltzmann constant o =56705 X 1072 W/(cm®> K*%)

APPENDIX 2. CONVERSION FACTORS FOR ENERGY UNITS®

erg eV cal/mol® cm™! K
erg 1 6.242 X 101" 14394 x 1016 50346 x 10  7.243 x 10
eV 1.602 x 10712 1 23045 x 10*  8.0660 x 10°  1.1605 x 10*
cal/mol® | 6.952 x 1077 43393 x 1073 1 0.34973 0.50319
cm™! 1.986 x 10716 1.2398 x 104 2.8573 1 1.4386
K 1.3806 x 10°' 8.617 x 1073 1.9859 0.69504 1

211 =107 erg,
One calorie divided by Avogadro’s number.

367
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APPENDIX 3. SOME RELATIONS OF PLASMA PHYSICS EXPRESSED
IN CONVENIENT UNITS

No.2

Formula? Factor C Units Used

5.931 X 107 cm/s in eV, m in units of m,’

1 v==Cye/m

£
1389 x 108 cm/s & in eV, m in amu®
5506 X 105cm/s & in K, m in units of m.®
1.289 x 10 cm/s ¢ in K, m in amu®
2 w=Ce 1.520 x 103 7! g ineV
3 w=C/A 1.885 x 10" 57! Ain cm
4 w,=CyN, 5.642 x 10 s™! N, inem™?
5 rp=4T/N, 525.6 cm N, incm 3 T ineV
4.879 cm N, incm™3, T inK
6 wy=CH/m 1759 X 107 s ! H in G, m in units of m,”
9649 5! H in G, m in amu®
7 ry=CVem /H 3.372cm eineV,HinG
8 N=Cp/T 7340 X 10 cm™®  pinatm, T in K
9.658 X 10" cm™  p in Torr, T in K
9 D=CJ/T/u/(Na) 4278 x 10 cm?/s T inK, pin amu®
Nincem™3, o in A?
1.595 cm?/s The same T, u, o;
N =2.689 x 10" cm™?
10 x = CE/(TNo) 1.160 x 1020 EinV/cm, T in K,
o in A%, N incm™3
11 f=CTr”? 7.635 x 10 em™® T in 10° K, m in units of m,”

3.018 x 10! em~?
1.879 x 10® cm ™3

. . . b
T in eV, m in units of m,
T in K, m amu®

#The meaning of the formulas is as follows:

L.

2.

The particle velocity v = y2&/m, where v is the velocity, £ is the energy, and m is the
mass of the particle. .

The photon frequency w = &/#, where ¢ is the photon energy and o is the photon
frequency.

. The photon frequency w = 27c/A, where ¢ is the velocity of light and A is the wavelength.
. The frequency of plasma oscillations o, =

o \/47rNee2/m¢, , where N, is the electron number

density and m, is the electron mass.

. The Debye-Hiickel radius rp, = \/T/87rNee2 , where T is the temperature and N, is the

electron number density.
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. The Larmor frequency of a charged particle, w, = eH/mc, where H is the magnetic field

strength and m is the particle mass.

. The Larmor radius of the electron, r,; = v/w,, where v is the electron velocity and oy is

the Larmor frequency.

. The number density of gas particles, N = p/T, where p is the gas pressure and T is the

temperature.

. The diffusion coefficient for‘;i_Particle in a gas according to the Chapman-Enskog approxi-

mation, D = 3y27T /16 Noy/u, where T is the gas temperature, N is the number density
of gas particles, p is the reduced mass of the test and gas particles, and o is the mean
collision cross section for the test and gas particles.

The reduced electric field strength for a charged particle in a gas x = eE/TNo, where E is
the electric field strength, T is the gas temperature, N is the number density of gas particles,
and o is the collision cross section of the test charged particle with a particle of the gas.
The factor of the Saha formula, f = (mT/27?)*/?, where T is the temperature and m is
the particle mass.

®m, = 9.109 x 10”2 g,
‘1 amu = | atomic mass unit = m, = 1.6605 X 10~ g,

APPENDIX 4. THERMAL CAPACITIES OF GASES?

p
Gas T = 200 300 400 600 800 1000 K
H, 3.28 3.47 3.51 353 3.56 3.63
CH, 4.03 431 4.89 6.32 8.00 9.77
CO 352 351 353 3.67 3.84 3.99
N, 3.51 3.51 352 3.62 3.78 3.93
Air 351 3.51 3.63 3.67 3.83 3.98
0, 3.52 354 3.67 3.86 4.06 4.20
CO, — 4.50 4.99 5.72 6.19 6.51
Kr 2.51 2.51 2.50 2.50 2.50 2.50
Xe — 2.52 2.51 2.50 2.50 2.50

*Per molecule, at 1-atm pressure.

APPENDIX 5. COEFFICIENTS OF SELF-DIFFUSION®

Gas D, cm?%/s Gas D, cm?%/s Gas D, cm?%/s
He 16 H, 13 H,0 0.28
Ne 0.45 N, 0.18 CO, 0.096
Ar 0.16 0, 0.18 NH, 0.25
Kr 0.084 cO 0.18 CH, 0.20
Xe 0.048

Diffusion coefficients of atoms or molecules in the parent gas are reduced to the number
density N = 2.689 X 10'® cm ™3 corresponding to standard conditions (T = 273 K, p = 1 atm).
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APPENDIX 6. GAS-KINETIC CROSS SECTIONS®

Cross Section, 10~ cm?

Pair He Ne

Ar Kr Xe H, N, 0O, CO CO,

He 1.5 2.0
Ne 2.4

29 33 37 23 3.0 2.9 3.0 3.6
3.4 4.0 4.4 2.7 32 3.5 3.6 4.9
5.0 5.6 6.7 37 5.1 5.2 5.3 5.5
6.5 7.7 4.3 5.8 5.6 5.9 6.1

9.0 5.0 6.7 6.9 6.8 7.6

2.7 3.8 37 3.9 4.5

5.0 4.9 5.1 6.3

4.9 4.9 5.9

5.0 6.3

7.8

"Values of the gas-kinetic cross sections are obtained from the formula o, = T/(puvp ND),
where D is the diffusion coefficient, T is the room temperature expressed in energy units, N is

the number density of atoms or molecules, vy = /8T /() is the average particle velocity, and

w is the reduced mass.

APPENDIX 7. THERMAL CONDUCTIVITY COEFFICIENTS OF GASES®

Thermal Conductivity, 10~* W /(cm K)

Gas T =100 200 300 400 600 800 1000 K
H, 6.7 13.1 18.3 22.6 30.5 37.8 44.8
He 7.2 11.5 15.1 18.4 25.0 30.4 354
CH, — 2.17 3.41 4.88 8.22 — —
NH;, — 1.53 2.47 6.70 6.70 — —
H,0 — — — 2.63 4.59 7.03 9.74
Ne 223 3.67 4.89 6.01 7.97 9.7 11.3
cO 0.84 1.72 2.49 3.16 4.40 5.54 6.61
N, 0.96 1.83 2.59 327 4.46 5.48 6.47
Air 0.95 1.83 2.62 328 4.69 5.73 6.67
0, 0.92 1.83 2.66 3.30 4.73 5.89 7.10
Ar 0.66 1.26 .77 2.22 3.07 3.74 4.36
CO, — 0.94 1.66 243 4.07 5.51 6.82
Kr — 0.65 1.00 1.26 1.75 221 2.62
Xe — 0.39 0.58 0.74 1.05 1.35 1.64

?At 1-atm pressure.
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APPENDIX 8. VISCOSITY COEFFICIENTS OF GASES®

Viscosity, 10~ g /(cm s)

Gas T =100 200 300 400 600 800 1000 K
H, 421 6.81 8.96 10.8 14.2 17.3 20.1
He 9.77 15.4 19.6 23.8 31.4 38.2 44.5
CH, — 7.75 11.1 14.1 19.3 — —
H,0 — — — 132 21.4 29.5 37.6
Ne 14.8 24.1 31.8 38.8 50.6 60.8 70.2
CcoO — 12.7 17.7 21.8 28.6 34.3 39.2
N, 6.88 12.9 17.8 22.0 29.1 349 40.0
Air 7.11 13.2 18.5 23.0 30.6 37.0 42.4
0, 7.64 14.8 20.7 25.8 34.4 41.5 47.7
Ar 8.30 16.0 22.7 28.9 38.9 47.4 55.1
Co, — 9.4 14.9 19.4 273 33.8 39.5
Kr — — 25.6 33.1 45.7 54.7 64.6
Xe — — 233 30.8 43.6 54.7 64.6
At 1-atm pressure.
APPENDIX 9. CROSS SECTIONS OF RESONANT
CHARGE-EXCHANGE PROCESSES®
A o,100%m*|A o,100%em>|A o, 10%em?’ A o,107" cm?
H 62 (5.0 IS 87 (6.7) | Ge 10 (8) Sb 11 (9.1)
He 35 (28 |l 58 (4.6) | As 10 8.3) | Te 11 (8.6)
Li 26 (22) Ar 55 (45) |Se 10 82) |1 7.0 (5.6)
Be 15 (11) K 41 (35) Br 59 (46) | Xe 9.1 (1.5)
B 12 83) |Ca 26 (21) Kr 73 (59) | Cs 53 (45)
C 62 (5.0) |Ti 22 (19) Rb 45 (39) Ba 35 (30)
N 49 (2.8) |V 23 (19) Sr 30 (25) Ta 19 (16)
0 52 (43) |[Cr 21 (18) Zr 23 (20) w 18 (15)
F 36 (29) | Mn 19 (16) Nb 22 (19) Re 21 (17)
Ne 32 (25 | Fe 21 (18) Mo 20 (17) Pt 18 (15)
Na 31 (26) Co 21 (18) Pd 22 (19) Au 17 (14)
Mg 19 (16) Ni 19 (16) Ag 20 (17) Hg 16 (13)
Al 16 (13) Cu 19 (16) Cd 17 (14) Tl 18 (15)
Si 98 (7.7) | Zn 16 (13) In 19 (16) Pb 17 (14)
P 8.1 (6.5) |Ga 17 (14) Sn 11 87 |U 26 (22)

*Charge-exchange cross sections of ions with parent atoms (A) relate to the collision energies 0.1
and 10 eV (in parentheses) in the laboratory frame. That is, A is at rest during the collision.
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APPENDIX 10. IONIZATION POTENTIALS | OF ATOMS
IN THE GROUND STATE

Atom I,eV Atom I,eV Atom I, eV Atom I, eV
HCS, ,) 13598 | KCS,,) 4341 | Rb(3S, ) 4177 | Cs(’S,,5) 3.894
He('S,) 24.586 | Ca('s,) 6.113 | Sr('S,) 5.695 | Ba('S,) 5.212
Li(’S, 2) 5392 | Sc(®Dy,,) 6562 | YCD;,,) 6.217 | La(’D;,;) 5577
Be('S,) 9.323 | TIiC’F,) 6.82 | Zr(°F,) 6.837 | Ce(!G,) 5.539
B(2P, ;) 8.298 | V(‘F;,5) 674 | Nb(°D,,;) 688 | Ta(*F;,,)  7.89
CCPy) 11.260 | Ccx(’Sy) 6.766 | Mo(’S;) 7.099 | WCD,) 7.98
N(*S5,) 14534 | Mn(®Ss,,) 7434 | Te(®Ss),) 728 | Re(®S;5,,)  7.88
OCP,) 13.618 | Fe(°D,) 7.902 | Ru(°F) 7.366 | Os(>D,) 8.73
FCPy,) 17423 | Co(*Fy,)  7.86 | RA(*Fy ) 746 | Ii(*F, ;) 9.05
Ne('S,) 21.565 | Ni(3F,) 7.637 | Pd('S,) 8.336 | Pt°D;) 8.96
Na(®s, ;) 5.139 | Cu(®S, ;) 7726 | Ag(S, ) 7576 | Au(®S,,,)  9.226
Mg('S,) 7.646 | Zn('S),) 9.394 | Cd('S,) 8.994 | Hg('sy) 10.438
AP, ;) 5986 | Ga(Py,,) 5999 | InCPy ;) 5786 | TICP, ;) 6.108
Si(P,) 8.152 | Ge(’P,) 7.900 | SnC*Py) 7.344 | Pb(PPy) 7.417
P(*Ss,,) 10.487 | As(*S;,,) 9.789 | Sb(*S;,,) 8.609 | Bi(*S,,,) 7.286
sép,) 10.360 | Se(*P,) 9.752 | Te(®Py) 9.010 | Rn('S,) 10.75
CI(*P;,,) 12968 | Br(°P,,,)  11.814 | 1CP;))) 10.451 | Ra('Sy) 5.278
Ar(!Sy) 15.760 | Kr('S,) 14.000 | Xe('S,) 12.130 | UCL,) 6.194
APPENDIX 11. ELECTRON AFFINITIES EA OF ATOMS®
Ion EA, eV Ion EA, ¢V Ion EA, eV Ion EA,eV
H-(1S) 075416 | S (3P) 20771 Se"((P) 20207 | 1°('8) 3.0590
He~ Not Cc=('s) 36127 | Bro(!§)  3.3636 | Xe~ Not
Li~('s) 0618 Ar~ Not Kr~ Not Cs=(!S) 04716
Be~ Not K-('s) 0.5015 | Rb~('S)  0.4859 | Ba~ Not
B (P) 028 Ca~(®P) 0.024 Sr™(3P)  0.026 La~(’F) 05
C(*S) 1262 Sc™(!D)  0.19 Zr (*F)  0.43 Hf~ Not
C (’D) 0.035 Ti"(*F)  0.08 Nb~(°D)  0.89 Ta~(°D) 032
N- Not V-(D) 053 Mo~ (°S) 0.75 W=(®S) 0816
O~(P) 14611 | Cr=(’s)  0.67 Tc~(°D) 06 Re"(°D) 02
F-(S) 34012 | Mn~ Not Ru " (‘F) 1.0 Os~(*F) 1.1
Ne~ Not Fe~(*F)  0.51 Rh™(F) 114 Ir"CF) 157
Na~(1§) 05479 | Co (’F)  0.662 Pd~(?D) 056 Pt=(*D)  2.128
Mg~ Not Ni—(CD) 115 Ag('S) 130 Au=('S) 23086
AI"CP) 0433 Cu (ls) 123 cd- Not Hg~ Not
SiT(*s) 1385 Zn~ Not In"(CP) 04 TPy 04
Si-(’D) 0527 Ga~(*°P) 043 Sn=(*5) 1112 Pb~(*S)  0.364
Si—(*P)  0.029 Ge (*S) 1233 Sb~(*P)  1.05 Bi-(CP) 095
P-CCP) 07465 | AsT(CP)  0.80 Te"(*P) 19708 | Po~(*°P) 19

“EA is the electron binding energy of the negative ion in the electron state indicated; *“Not”
means that the electron affinity of the atom does not have a positive value.
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APPENDIX 12. WORK FUNCTIONS W, OF ELEMENTS IN
A POLYCRYSTALLINE STATE

Element Wy, eV Element Wy, eV Element w,, eV Element w,, eV
Li 2.38 Co 441 In 38 Hf 3.53
Be 3.92 Ni 4.50 Sn 4.38 Ta 4.12
B 4.5 Cu 4.40 Sb 4,08 Y 4.54
C 4.7 Zn 4,24 Te 473 Re 50
Na 2.35 Ga 3.96 Cs 1.81 Os 4.7
Mg 3.64 Ge 4.76 Ba 249 Ir 4.7
Al 4,25 As 5.11 La 3.3 Pt 5.32
Si 4.8 Se 4.72 Ce 2.7 Au 4.30
S 6.0 Rb 2.35 Pr 2.7 Hg 4.52
K 2.22 Y 3.3 Nd 3.2 Tl 3.7
Ca 2.80 Zr 3.9 Sm 27 Pb 4.0
Sc 33 Nb 3.99 Cd 3.1 Bi 4.4
Ti 3.9 Mo 4.3 Tb 3.15 Th 3.3
\" 4.12 Ru 4.6 Dy 3.25 U 3.3
Cr 4.58 Pd 4.8 Ho 3.22
Mn 3.83 Ag 4.3 Er 3.25
Fe 431 Cd 4.1 Tm 3.10

APPENDIX 13. PARAMETERS OF SOME LIQUID REFRACTORY

METALS AND THEIR CLUSTERS®

Metal T, K T,,K &g, eV A, eV Po, 10° atm W,, eV

Be 1560 2744 3.1 1.4 23 3.92
Ti 1941 3560 49 3.2 300 3.92
\" 2183 3680 5.1 3.7 46 4.12
Fe 1812 3023 38 3.0 11 4.31
Co 1768 3200 4.1 3.1 3.5 441
Ni 1728 3100 3.2 29 41 4.50
Cu 1358 2835 3.4 2.2 15 4.40
Pd 1828 3236 3.7 29 6.0 4.8
Ag 1235 2435 29 2.0 15 43
w 3695 5830 8.6 4.7 22 4.54
Re 3459 5880 7.4 5.3 63 5.0
Os 3100 5300 7.9 4.7 230 4.7
Ir 2819 4700 6.4 4.9 130 4.7
Pt 2041 4100 5.6 3.6 170 5.32
Au 1337 3129 3.6 2.5 12 43

“In this Table T,, is the melting point of the metal, T}, is its boiling point, W, is the work
function for the polycrystalline state of the metal, the binding energy of atoms in a liquid cluster
consisting of n atoms is given as E = g,n — An*/?, and the saturated vapor pressure for a given
metal is p, (T) = p,exp(—&,/T), where T is the temperature expressed in energy units. Data
refer to the liquid state near the melting point. Some differences between T, and that following
from the last formula are due to the inaccuracy of the data and of this approximation.
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